IMO Shortlist 2008

Berlin, Germany

Algebra

11 Find all functions $f:(0, \infty) \mapsto(0, \infty)$ (so f is a function from the positive real numbers) such that

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbes w, x, y, z, satisfying $w x=y z$.
Author: Hojoo Lee, South Korea
2 (i) If x, y and z are three real numbers, all different from 1 , such that $x y z=1$, then prove that $\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1$. (With the \sum sign for cyclic summation, this inequality could be rewritten as $\sum \frac{x^{2}}{(x-1)^{2}} \geq 1$.)
(ii) Prove that equality is achieved for infinitely many triples of rational numbers x, y and z. Author: Walther Janous, Austria

03 Let $S \subseteq \mathbb{R}$ be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish Couple on S, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $f(x)<f(y)$ and $g(x)<g(y)$ for all $x, y \in S$ with $x<y$;
(ii) The inequality $f(g(g(x)))<g(f(x))$ holds for all $x \in S$.

Decide whether there exists a Spanish Couple on the set $S=\mathbb{N}$ of positive integers; [/*:m] on the set $S=\left\{a-\frac{1}{b}: a, b \in \mathbb{N}\right\}\left[/^{*}: \mathrm{m}\right]$

Proposed by Hans Zantema, Netherlands
4 For an integer m, denote by $t(m)$ the unique number in $\{1,2,3\}$ such that $m+t(m)$ is a multiple of 3. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies $f(-1)=0, f(0)=1, f(1)=-1$ and $f\left(2^{n}+m\right)=f\left(2^{n}-t(m)\right)-f(m)$ for all integers $m, n \geq 0$ with $2^{n}>m$. Prove that $f(3 p) \geq 0$ holds for all integers $p \geq 0$.

Proposed by Gerhard Woeginger, Austria
5 Let a, b, c, d be positive real numbers such that $a b c d=1$ and $a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$. Prove that

$$
a+b+c+d<\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}
$$

Proposed by Pavel Novotn, Slovakia

IMO Shortlist 2008

Berlin, Germany

6 Let $f: \mathbb{R} \rightarrow \mathbb{N}$ be a function which satisfies $f\left(x+\frac{1}{f(y)}\right)=f\left(y+\frac{1}{f(x)}\right)$ for all $x, y \in \mathbb{R}$. Prove that there is a positive integer which is not a value of f.

> Proposed by ymantas Darbnas (Zymantas Darbenas), Lithania

7 Prove that for any four positive real numbers a, b, c, d the inequality

$$
\frac{(a-b)(a-c)}{a+b+c}+\frac{(b-c)(b-d)}{b+c+d}+\frac{(c-d)(c-a)}{c+d+a}+\frac{(d-a)(d-b)}{d+a+b} \geq 0
$$

holds. Determine all cases of equality.
Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany

IMO Shortlist 2008

Berlin, Germany

Combinatorics

1 In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary. Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

Proposed by Gerhard Woeginger, Netherlands
2 Let $n \in \mathbb{N}$ and A_{n} set of all permutations $\left(a_{1}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ for which

$$
k \mid 2\left(a_{1}+\cdots+a_{k}\right), \text { for all } 1 \leq k \leq n .
$$

Find the number of elements of the set A_{n}.
53 In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer k, two distinct points $a, B \in S$ will be called k-friends if there is a point $C \in S$ such that the area of the triangle $A B C$ is equal to k. A set $T \subset S$ will be called k-clique if every two points in T are k-friends. Find the least positive integer k for which there exits a k-clique with more than 200 elements.

Proposed by Jorge Tipe, Peru
4 Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. Let $2 n$ lamps labelled $1,2, \ldots, 2 n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).
Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off.
Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on.
Determine $\frac{N}{M}$.
Author: Bruno Le Floch and Ilia Smilga, France
5 Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+l}\right\}$ be a $(k+l)$-element set of real numbers contained in the interval $[0,1] ; k$ and l are positive integers. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{l} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+l}{2 k l}
$$

IMO Shortlist 2008

Berlin, Germany

Prove that the number of nice subsets is at least $\frac{2}{k+l}\binom{k+l}{k}$.
Proposed by Andrey Badzyan, Russia
6 For $n \geq 2$, let $S_{1}, S_{2}, \ldots, S_{2^{n}}$ be 2^{n} subsets of $A=\left\{1,2,3, \ldots, 2^{n+1}\right\}$ that satisfy the following property: There do not exist indices a and b with $a<b$ and elements $x, y, z \in A$ with $x<y<z$ and $y, z \in S_{a}$, and $x, z \in S_{b}$. Prove that at least one of the sets S_{1}, S_{2}, \ldots, $S_{2^{n}}$ contains no more than $4 n$ elements.

Proposed by Gerhard Woeginger, Netherlands

IMO Shortlist 2008

Berlin, Germany

Geometry

11 Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $B C$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}.
Prove that six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$ and C_{2} are concyclic.
Author: Andrey Gavrilyuk, Russia
2 Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, assume that there exist points E on line $B C$ outside segment $B C$, and F inside segment $A D$ such that $\angle D A E=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$, assume it does not lie on line $A B$. Prove that I belongs to the circumcircle of $A B K$ if and only if K belongs to the circumcircle of $C D J$.

Proposed by Charles Leytem, Luxembourg
53 Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

Proposed by John Cuya, Peru
4 In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the point A anf F and tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

[Diagram by azjps]

Proposed by Davood Vakili, Iran
55 Let k and n be integers with $0 \leq k \leq n-2$. Consider a set L of n lines in the plane such that no two of them are parallel and no three have a common point. Denote by I the set of intersections of lines in L. Let O be a point in the plane not lying on any line of L. A point $X \in I$ is colored red if the open line segment $O X$ intersects at most k lines in L. Prove that I contains at least $\frac{1}{2}(k+1)(k+2)$ red points.

Proposed by Gerhard Woeginger, Netherlands
6 There is given a convex quadrilateral $A B C D$. Prove that there exists a point P inside the quadrilateral such that

$$
\angle P A B+\angle P D C=\angle P B C+\angle P A D=\angle P C D+\angle P B A=\angle P D A+\angle P C B=90^{\circ}
$$

if and only if the diagonals $A C$ and $B D$ are perpendicular.
Proposed by Dukan Dukic, Serbia
7 Let $A B C D$ be a convex quadrilateral with $B A$ different from $B C$. Denote the incircles of triangles $A B C$ and $A D C$ by k_{1} and k_{2} respectively. Suppose that there exists a circle k tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$.
Prove that the common external tangents to k_{1} and k_{2} intersects on k.
Author: Vladimir Shmarov, Russia

IMO Shortlist 2008

Berlin, Germany

Number Theory

1 Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

$$
a^{n}+p b=b^{n}+p c=c^{n}+p a
$$

then $a=b=c$.
Proposed by Angelo Di Pasquale, Australia
2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of the numbers $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

Proposed by Mohsen Jamaali, Iran
33 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$. Prove that $a_{n} \geq 2^{n}$ for all $n \geq 0$.

Proposed by Morteza Saghafian, Iran
4 Let n be a positive integer. Show that the numbers

$$
\binom{2^{n}-1}{0},\binom{2^{n}-1}{1},\binom{2^{n}-1}{2}, \ldots,\binom{2^{n}-1}{2^{n-1}-1}
$$

are congruent modulo 2^{n} to $1,3,5, \ldots, 2^{n}-1$ in some order.
Proposed by Duskan Dukic, Serbia
5 For every $n \in \mathbb{N}$ let $d(n)$ denote the number of (positive) divisors of n. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties: $d(f(x))=x$ for all $x \in \mathbb{N} .[/ *: \mathrm{m}] f(x y)$ divides $(x-1) y^{x y-1} f(x)$ for all $x, y \in \mathbb{N} .[/ *: \mathrm{m}]$

Proposed by Bruno Le Floch, France
6 Prove that there are infinitely many positive integers n such that $n^{2}+1$ has a prime divisor greater than $2 n+\sqrt{2 n}$.

Author: Kestutis Cesnavicius, Lithuania

