IMO Shortlist 2007

Algebra

1 Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are given. For each $i,(1 \leq i \leq n)$, define

$$
d_{i}=\max \left\{a_{j} \mid 1 \leq j \leq i\right\}-\min \left\{a_{j} \mid i \leq j \leq n\right\}
$$

and let $d=\max \left\{d_{i} \mid 1 \leq i \leq n\right\}$.
(a) Prove that, for any real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right| \mid 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{*}
\end{equation*}
$$

(b) Show that there are real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that the equality holds in (*). Author: Michael Albert, New Zealand

2 Consider those functions $f: \mathbb{N} \mapsto \mathbb{N}$ which satisfy the condition

$$
f(m+n) \geq f(m)+f(f(n))-1
$$

for all $m, n \in \mathbb{N}$. Find all possible values of $f(2007)$.
Author: unknown author, Bulgaria
3 Let n be a positive integer, and let x and y be a positive real number such that $x^{n}+y^{n}=1$. Prove that

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{1}{(1-x) \cdot(1-y)} .
$$

Author: unknown author, Estonia
44 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying $f(x+f(y))=f(x+y)+f(y)$ for all pairs of positive reals x and y. Here, \mathbb{R}^{+}denotes the set of all positive reals.

Author: unknown author, Thailand
5 Let $c>2$, and let $a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that

$$
a(m+n) \leq 2 \cdot a(m)+2 \cdot a(n) \text { for all } m, n \geq 1,
$$

and $a\left(2^{k}\right) \leq \frac{1}{(k+1)^{c}}$ for all $k \geq 0$. Prove that the sequence $a(n)$ is bounded.
Author: Vjekoslav Kova, Croatia

IMO Shortlist 2007

56 Let $a_{1}, a_{2}, \ldots, a_{100}$ be nonnegative real numbers such that $a_{1}^{2}+a_{2}^{2}+\ldots+a_{100}^{2}=1$. Prove that

$$
a_{1}^{2} \cdot a_{2}+a_{2}^{2} \cdot a_{3}+\ldots+a_{100}^{2} \cdot a_{1}<\frac{12}{25} .
$$

Author: Marcin Kuzma, Poland
7 Let n be a positive integer. Consider

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include $(0,0,0)$.

Author: Gerhard Wginger, Netherlands

Combinatorics

1 Let $n>1$ be an integer. Find all sequences $a_{1}, a_{2}, \ldots a_{n^{2}+n}$ satisfying the following conditions:
(a) $a_{i} \in\{0,1\}$ for all $1 \leq i \leq n^{2}+n$;
(b) $a_{i+1}+a_{i+2}+\ldots+a_{i+n}<a_{i+n+1}+a_{i+n+2}+\ldots+a_{i+2 n}$ for all $0 \leq i \leq n^{2}-n$.

Author: unknown author, Serbia
2 A rectangle D is partitioned in several (≥ 2) rectangles with sides parallel to those of D. Given that any line parallel to one of the sides of D, and having common points with the interior of D, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with D 's boundary.

Author: unknown author, Japan

3 Find all positive integers n for which the numbers in the set $S=\{1,2, \ldots, n\}$ can be colored red and blue, with the following condition being satisfied: The set $S \times S \times S$ contains exactly 2007 ordered triples (x, y, z) such that:
(i) the numbers x, y, z are of the same color, and (ii) the number $x+y+z$ is divisible by n.

Author: Gerhard Wginger, Netherlands
4 Let $A_{0}=\left(a_{1}, \ldots, a_{n}\right)$ be a finite sequence of real numbers. For each $k \geq 0$, from the sequence $A_{k}=\left(x_{1}, \ldots, x_{k}\right)$ we construct a new sequence A_{k+1} in the following way. 1 . We choose a partition $\{1, \ldots, n\}=I \cup J$, where I and J are two disjoint sets, such that the expression

$$
\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|
$$

attains the smallest value. (We allow I or J to be empty; in this case the corresponding sum is 0 .) If there are several such partitions, one is chosen arbitrarily. 2. We set $A_{k+1}=\left(y_{1}, \ldots, y_{n}\right)$ where $y_{i}=x_{i}+1$ if $i \in I$, and $y_{i}=x_{i}-1$ if $i \in J$. Prove that for some k, the sequence A_{k} contains an element x such that $|x| \geq \frac{n}{2}$.

Author: Omid Hatami, Iran

IMO Shortlist 2007

5 In the Cartesian coordinate plane define the strips $S_{n}=\{(x, y) \mid n \leq x<n+1\}, n \in \mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.
[hide="IMO Shortlist 2007 Problem C5 as it appears in the official booklet:"]In the Cartesian coordinate plane define the strips $S_{n}=\{(x, y) \mid n \leq x<n+1\}$ for every integer n. Assume each strip S_{n} is colored either red or blue, and let a and b be two distinct positive integers. Prove that there exists a rectangle with side length a and b such that its vertices have the same color.

Edited by Orlando Dhring

Author: Radu Gologan and Dan Schwarz, Romania
6 In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.

Author: Vasily Astakhov, Russia

7 Let $\alpha<\frac{3-\sqrt{5}}{2}$ be a positive real number. Prove that there exist positive integers n and $p>\alpha \cdot 2^{n}$ for which one can select $2 \cdot p$ pairwise distinct subsets $S_{1}, \ldots, S_{p}, T_{1}, \ldots, T_{p}$ of the set $\{1,2, \ldots, n\}$ such that $S_{i} \cap T_{j} \neq \emptyset$ for all $1 \leq i, j \leq p$

Author: Gerhard Wginger, Austria
8 Given is a convex polygon P with n vertices. Triangle whose vertices lie on vertices of P is called good if all its sides are equal in length. Prove that there are at most $\frac{2 n}{3}$ good triangles.

Author: unknown author, Ukraine

IMO Shortlist 2007

Geometry

1 In triangle $A B C$ the bisector of angle $B C A$ intersects the circumcircle again at R, the perpendicular bisector of $B C$ at P, and the perpendicular bisector of $A C$ at Q. The midpoint of $B C$ is K and the midpoint of $A C$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.

Author: Marek Pechal, Czech Republic

2 Denote by M midpoint of side $B C$ in an isosceles triangle $\triangle A B C$ with $A C=A B$. Take a point X on a smaller arc $M A$ of circumcircle of triangle $\triangle A B M$. Denote by T point inside of angle $B M A$ such that $\angle T M X=90$ and $T X=B X$.
Prove that $\angle M T B-\angle C T M$ does not depend on choice of X.
Author: unknown author, Canada
3 The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.

Author: unknown author, Ukraine
4 Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.

Author: Charles Leytem, Luxembourg

5 Let $A B C$ be a fixed triangle, and let A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, C A, A B$, respectively. Let P be a variable point on the circumcircle. Let lines $P A_{1}, P B_{1}, P C_{1}$ meet the circumcircle again at $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Assume that the points $A, B, C, A^{\prime}, B^{\prime}$, C^{\prime} are distinct, and lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form a triangle. Prove that the area of this triangle does not depend on P.

Author: Christopher Bradley, United Kingdom
6 Determine the smallest positive real number k with the following property. Let $A B C D$ be a convex quadrilateral, and let points A_{1}, B_{1}, C_{1}, and D_{1} lie on sides $A B, B C, C D$, and $D A$, respectively. Consider the areas of triangles $A A_{1} D_{1}, B B_{1} A_{1}, C C_{1} B_{1}$ and $D D_{1} C_{1}$; let S be the sum of the two smallest ones, and let S_{1} be the area of quadrilateral $A_{1} B_{1} C_{1} D_{1}$. Then we always have $k S_{1} \geq S$.

Author: unknown author, USA

IMO Shortlist 2007

7 Given an acute triangle $A B C$ with $\angle B>\angle C$. Point I is the incenter, and R the circumradius. Point D is the foot of the altitude from vertex A. Point K lies on line $A D$ such that $A K=2 R$, and D separates A and K. Lines $D I$ and $K I$ meet sides $A C$ and $B C$ at E, F respectively. Let $I E=I F$.

Prove that $\angle B \leq 3 \angle C$.
Author: Davoud Vakili, Iran
8 Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.

Author: Waldemar Pompe, Poland

IMO Shortlist 2007

Number Theory

1 Find all pairs of natural number (a, b) satisfying $7^{a}-3^{b}$ divides $a^{4}+b^{2}$
Author: Stephan Wagner, Austria
2 Let $b, n>1$ be integers. Suppose that for each $k>1$ there exists an integer a_{k} such that $b-a_{k}^{n}$ is divisible by k. Prove that $b=A^{n}$ for some integer A.

Author: unknown author, Canada
3 Let X be a set of 10,000 integers, none of them is divisible by 47 . Prove that there exists a 2007-element subset Y of X such that $a-b+c-d+e$ is not divisible by 47 for any $a, b, c, d, e \in Y$.

Author: Gerhard Wginger, Netherlands
4 For every integer $k \geq 2$, prove that $2^{3 k}$ divides the number

$$
\binom{2^{k+1}}{2^{k}}-\binom{2^{k}}{2^{k-1}}
$$

but $2^{3 k+1}$ does not.
Author: unknown author, Poland
5 Find all surjective functions $f: \mathbb{N} \mapsto \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.

Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran
6 Let k be a positive integer. Prove that the number $\left(4 \cdot k^{2}-1\right)^{2}$ has a positive divisor of the form $8 k n-1$ if and only if k is even.
[url=http://www.mathlinks.ro/viewtopic.php?p=894656894656]Actual IMO 2007 Problem, posed as question 5 in the contest, which was used as a lemma in the official solutions for problem N6 as shown above.[/url]

Author: Kevin Buzzard and Edward Crane, United Kingdom
7 For a prime p and a given integer n let $\nu_{p}(n)$ denote the exponent of p in the prime factorisation of n !. Given $d \in \mathbb{N}$ and $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ a set of k primes, show that there are infinitely many positive integers n such that $d \mid \nu_{p_{i}}(n)$ for all $1 \leq i \leq k$.

Author: Tejaswi Navilarekkallu, India

