IMO Shortlist 2003

Algebra

(1) Let $a_{i j}$ (with the indices i and j from the set $\{1,2,3\}$) be real numbers such that $a_{i j}>0$ for $i=j ; a_{i j}<0$ for $i \neq j$.
Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers
$a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}$
are either all negative, or all zero, or all positive.
2 Find all nondecreasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that (i) $f(0)=0, f(1)=1$; (ii) $f(a)+f(b)=$ $f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

3 Consider two monotonically decreasing sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$, where $k \geq 1$, and a_{k} and b_{k} are positive real numbers for every k. Now, define the sequences
$c_{k}=\min \left(a_{k}, b_{k}\right) ; A_{k}=a_{1}+a_{2}+\ldots+a_{k} ; B_{k}=b_{1}+b_{2}+\ldots+b_{k} ; C_{k}=c_{1}+c_{2}+\ldots+c_{k}$
for all natural numbers k .
(a) Do there exist two monotonically decreasing sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ of positive real numbers such that the sequences $\left(A_{k}\right)$ and $\left(B_{k}\right)$ are not bounded, while the sequence $\left(C_{k}\right)$ is bounded?
(b) Does the answer to problem (a) change if we stipulate that the sequence $\left(b_{k}\right)$ must be $b_{k}=\frac{1}{k}$ for all k ?

4 Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers. Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.
5 Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$that satisfy the following conditions:

- $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;
- $f(x)<f(y)$ for all $1 \leq x<y$.

6 Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that $z_{i+j}^{2} \geq$ $x_{i} y_{j} \quad$ for all $1 \leq i, j \leq n$.

IMO Shortlist 2003

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right)
$$

[hide="comment"] Edited by Orl.

IMO Shortlist 2003

Combinatorics

11 Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
$\boxed{2}$ Let $D_{1}, D_{2}, \ldots, D_{n}$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most $7 \cdot 2003-1=14020$ other discs D_{i}.

3 Let $n \geq 5$ be an integer. Find the maximal integer k such that there exists a polygon with n vertices (convex or not, but not self-intersecting!) having k internal 90° angles.

4 Given n real numbers $x_{1}, x_{2}, \ldots, x_{n}$, and n further real numbers $y_{1}, y_{2}, \ldots, y_{n}$. The elements $a_{i j}$ (with $1 \leq i, j \leq n$) of an $n \times n$ matrix are defined as follows:
$a_{i j}=\left\{\begin{array}{lll}1 & \text { if } & x_{i}+y_{j} \geq 0 ; \\ 0 & \text { if } & x_{i}+y_{j}<0 .\end{array}\right.$
Further, let B be an $n \times n$ matrix whose elements are numbers from the set 0 ; 1 satisfying the following condition: The sum of all elements of each row of B equals the sum of all elements of the corresponding row of A; the sum of all elements of each column of B equals the sum of all elements of the corresponding column of A . Show that in this case, $\mathrm{A}=\mathrm{B}$.
[hide="comment"] (This one is from the ISL 2003, but in any case, [url=http://www.bundeswettbewerbmathematik.de/imo/aufgaben/aufgaben.htm]the official problems and solutions - in German -[/url] are already online, hence I take the liberty to post it here.)

Darij

5 Regard a plane with a Cartesian coordinate system; for each point with integer coordinates, draw a circular disk centered at this point and having the radius $\frac{1}{1000}$.
a) Prove the existence of an equilateral triangle whose vertices lie in the interior of different disks;
b) Show that every equilateral triangle whose vertices lie in the interior of different disks has a sidelength ¿ 96 .
Radu Gologan, Romania [hide="Remark"] [The " i 96 " in (b) can be strengthened to " $\dot{1} 124$ ".
By the way, part (a) of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537 well-known "Dedekind" theorem[/url].]

IMO Shortlist 2003

6 Let $f(k)$ be the number of all non-negative integers n satisfying the following conditions:
(1) The integer n has exactly k digits in the decimal representation (where the first digit is not necessarily non-zero!), i. e. we have $0 \leq n<10^{k}$.
(2) These k digits of n can be permuted in such a way that the resulting number is divisible by 11 .
Show that for any positive integer number m, we have $f(2 m)=10 f(2 m-1)$.

IMO Shortlist 2003

Geometry

(1) Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

52 Given three fixed pairwisely distinct points A, B, C lying on one straight line in this order. Let G be a circle passing through A and C whose center does not lie on the line $A C$. The tangents to G at A and C intersect each other at a point P. The segment $P B$ meets the circle G at Q.

Show that the point of intersection of the angle bisector of the angle $A Q C$ with the line $A C$ does not depend on the choice of the circle G.

3 Let $A B C$ be a triangle, and P a point in the interior of this triangle. Let D, E, F be the feet of the perpendiculars from the point P to the lines $B C, C A, A B$, respectively. Assume that $A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}$.
Furthermore, let I_{a}, I_{b}, I_{c} be the excenters of triangle $A B C$. Show that the point P is the circumcenter of triangle $I_{a} I_{b} I_{c}$.

44 Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

5 Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.
[hide=" comment"] (According to my team leader, last year some of the countries wanted a geometry question that was even easier than this...that explains IMO 2003/4...)
[Note by Darij: This was also Problem 6 of the German pre-TST 2004, written in December 03.]

Edited by Orl.

IMO Shortlist 2003

6 Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.

7 Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all of these three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r .
$$

Alternative formulation. In a triangle $A B C$, construct circles with diameters $B C, C A$, and $A B$, respectively. Construct a circle w externally tangent to these three circles. Let the radius of this circle w be t. Prove: $\frac{s}{2}<t \leq \frac{s}{2}+\frac{1}{2}(2-\sqrt{3}) r$, where r is the inradius and s is the semiperimeter of triangle $A B C$.

IMO Shortlist 2003

Number Theory

11 Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows: $x_{i}=2^{i}$ if $0 \leq i \leq m-1$ and $x_{i}=\sum_{j=1}^{m} x_{i-j}$, if $i \geq m$.

22 Each positive integer a is subjected to the following procedure, yielding the number $d=d(a)$:
(a) The last digit of a is moved to the first position. The resulting number is called b. (b) The number b is squared. The resulting number is called c. (c) The first digit of c is moved to the last position. The resulting number is called d.
(All numbers are considered in the decimal system.) For instance, $a=2003$ gives $b=3200$, $c=10240000$ and $d=02400001=2400001=d(2003)$.
Find all integers a such that $d(a)=a^{2}$.
3 Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
4 Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5,
$$

written in base b.
Prove that the following condition holds if and only if $b=10$:
there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.

5 An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

6 Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

7 The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows: $a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad$ for $k \geq 0$. Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

IMO Shortlist 2003

[hide="comment"] Hi guys,
Here is a nice problem:
Let be given a sequence a_{n} such that $a_{0}=2$ and $a_{n+1}=2 a_{n}^{2}-1$. Show that if p is an odd prime such that $p \mid a_{n}$ then we have $p^{2} \equiv 1\left(\bmod 2^{n+3}\right)$
Here are some futher question proposed by me j!- s:P-ijimg src=" SMILIES $_{P} A T H /$ tongue.gif" alt $=$ $": P " t i t l e=" R a z z " /><!--s: P-->$ roveordisprovethat $: 1) \operatorname{gcd}\left(\mathrm{n}, \mathrm{a}_{n}\right)=12$) for every odd prime number p we have $a_{m} \equiv \pm 1(\bmod p)$ where $m=\frac{p^{2}-1}{2^{k}}$ where $k=1$ or 2 Thanks kiu si u
Edited by Orl.
8 Let p be a prime number and let A be a set of positive integers that satisfies the following conditions: (1) the set of prime divisors of the elements in A consists of $p-1$ elements; (2) for any nonempty subset of A, the product of its elements is not a perfect p-th power. What is the largest possible number of elements in A ?

