IMO Shortlist 1995

Algebra

1 Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

52 Let a and b be non-negative integers such that $a b \geq c^{2}$, where c is an integer. Prove that there is a number n and integers $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ such that

$$
\sum_{i=1}^{n} x_{i}^{2}=a, \sum_{i=1}^{n} y_{i}^{2}=b, \text { and } \sum_{i=1}^{n} x_{i} y_{i}=c .
$$

53 Let n be an integer, $n \geq 3$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $2 \leq a_{i} \leq 3$ for $i=1,2, \ldots, n$. If $s=a_{1}+a_{2}+\ldots+a_{n}$, prove that

$$
\frac{a_{1}^{2}+a_{2}^{2}-a_{3}^{2}}{a_{1}+a_{2}-a_{3}}+\frac{a_{2}^{2}+a_{3}^{2}-a_{4}^{2}}{a_{2}+a_{3}-a_{4}}+\ldots+\frac{a_{n}^{2}+a_{1}^{2}-2 a^{2}}{a_{n}+a_{1}-a_{2}} \leq 2 s-2 n .
$$

4 Find all of the positive real numbers like x, y, z, such that :
1.) $x+y+z=a+b+c$
2.) $4 x y z=a^{2} x+b^{2} y+c^{2} z+a b c$

Proposed to Gazeta Matematica in the 80s by VASILE CRTOAJE and then by Titu Andreescu to IMO 1995.

5 Let \mathbb{R} be the set of real numbers. Does there exist a function $f: \mathbb{R} \mapsto \mathbb{R}$ which simultaneously satisfies the following three conditions?
(a) There is a positive number M such that $\forall x:-M \leq f(x) \leq M$. (b) The value of $\mathrm{f}(1)$ is 1. (c) If $x \neq 0$, then

$$
f\left(x+\frac{1}{x^{2}}\right)=f(x)+\left[f\left(\frac{1}{x}\right)\right]^{2}
$$

56 Let n be an integer, $n \geq 3$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $x_{i}<x_{i+1}$ for $1 \leq i \leq$ $n-1$. Prove that

$$
\frac{n(n-1)}{2} \sum_{i<j} x_{i} x_{j}>\left(\sum_{i=1}^{n-1}(n-i) \cdot x_{i}\right) \cdot\left(\sum_{j=2}^{n}(j-1) \cdot x_{j}\right)
$$

IMO Shortlist 1995

Geometry

1 Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N, X Y$ are concurrent.

2 Let A, B and C be non-collinear points. Prove that there is a unique point X in the plane of $A B C$ such that

$$
X A^{2}+X B^{2}+A B^{2}=X B^{2}+X C^{2}+B C^{2}=X C^{2}+X A^{2}+C A^{2}
$$

53 The incircle of triangle $\triangle A B C$ touches the sides $B C, C A, A B$ at D, E, F respectively. X is a point inside triangle of $\triangle A B C$ such that the incircle of triangle $\triangle X B C$ touches $B C$ at D, and touches $C X$ and $X B$ at Y and Z respectively. Show that E, F, Z, Y are concyclic.

54 An acute triangle $A B C$ is given. Points A_{1} and A_{2} are taken on the side $B C$ (with A_{2} between A_{1} and C), B_{1} and B_{2} on the side $A C$ (with B_{2} between B_{1} and A), and C_{1} and C_{2} on the side $A B$ (with C_{2} between C_{1} and B) so that

$$
\angle A A_{1} A_{2}=\angle A A_{2} A_{1}=\angle B B_{1} B_{2}=\angle B B_{2} B_{1}=\angle C C_{1} C_{2}=\angle C C_{2} C_{1} .
$$

The lines $A A_{1}, B B_{1}$, and $C C_{1}$ bound a triangle, and the lines $A A_{2}, B B_{2}$, and $C C_{2}$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.

5 Let $A B C D E F$ be a convex hexagon with $A B=B C=C D$ and $D E=E F=F A$, such that $\angle B C D=\angle E F A=\frac{\pi}{3}$. Suppose G and H are points in the interior of the hexagon such that $\angle A G B=\angle D H E=\frac{2 \pi}{3}$. Prove that $A G+G B+G H+D H+H E \geq C F$.

66 Let $A_{1} A_{2} A_{3} A_{4}$ be a tetrahedron, G its centroid, and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$, and A_{4}^{\prime} the points where the circumsphere of $A_{1} A_{2} A_{3} A_{4}$ intersects $G A_{1}, G A_{2}, G A_{3}$, and $G A_{4}$, respectively. Prove that

$$
G A_{1} \cdot G A_{2} \cdot G A_{3} \cdot G A .4 \leq G A_{1}^{\prime} \cdot G A_{2}^{\prime} \cdot G A_{3}^{\prime} \cdot G A_{4}^{\prime}
$$

and

$$
\frac{1}{G A_{1}^{\prime}}+\frac{1}{G A_{2}^{\prime}}+\frac{1}{G A_{3}^{\prime}}+\frac{1}{G A_{4}^{\prime}} \leq \frac{1}{G A_{1}}+\frac{1}{G A_{2}}+\frac{1}{G A_{3}}+\frac{1}{G A_{4}}
$$

IMO Shortlist 1995

7 Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines $\mathrm{BC}, \mathrm{AB}, \mathrm{DA}, \mathrm{CD}$ through the point O meet the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ of the quadrilateral ABCD at the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, respectively. Then, prove that $\sqrt{|A H O E|}+\sqrt{|C F O G|} \leq$ $\sqrt{|A B C D|}$, where $\left|P_{1} P_{2} \ldots P_{n}\right|$ is an abbreviation for the non-directed area of an arbitrary polygon $P_{1} P_{2} \ldots P_{n}$.

8 Suppose that $A B C D$ is a cyclic quadrilateral. Let $E=A C \cap B D$ and $F=A B \cap C D$. Denote by H_{1} and H_{2} the orthocenters of triangles $E A D$ and $E B C$, respectively. Prove that the points F, H_{1}, H_{2} are collinear.
Original formulation:
Let $A B C$ be a triangle. A circle passing through B and C intersects the sides $A B$ and $A C$ again at C^{\prime} and B^{\prime}, respectively. Prove that $B B^{\prime}, C C^{\prime}$ and $H H^{\prime}$ are concurrent, where H and H^{\prime} are the orthocentres of triangles $A B C$ and $A B^{\prime} C^{\prime}$ respectively.

IMO Shortlist 1995

NT, Combs

1 Let k be a positive integer. Show that there are infinitely many perfect squares of the form $n \cdot 2^{k}-7$ where n is a positive integer.

2 Let \mathbb{Z} denote the set of all integers. Prove that for any integers A and B, one can find an integer C for which $M_{1}=\left\{x^{2}+A x+B: x \in \mathbb{Z}\right\}$ and $M_{2}=2 x^{2}+2 x+C: x \in \mathbb{Z}$ do not intersect.

3 Determine all integers $n>3$ for which there exist n points A_{1}, \cdots, A_{n} in the plane, no three collinear, and real numbers r_{1}, \cdots, r_{n} such that for $1 \leq i<j<k \leq n$, the area of $\triangle A_{i} A_{j} A_{k}$ is $r_{i}+r_{j}+r_{k}$.

4 Find all x, y and z in positive integer: $z+y^{2}+x^{3}=x y z$ and $x=\operatorname{gcd}(y, z)$.
5 At a meeting of $12 k$ people, each person exchanges greetings with exactly $3 k+6$ others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?

6 Let p be an odd prime number. How many p-element subsets A of $\{1,2, \cdots 2 p\}$ are there, the sum of whose elements is divisible by p ?

7 Does there exist an integer $n>1$ which satisfies the following condition? The set of positive integers can be partitioned into n nonempty subsets, such that an arbitrary sum of $n-1$ integers, one taken from each of any $n-1$ of the subsets, lies in the remaining subset.

8 Let p be an odd prime. Determine positive integers x and y for which $x \leq y$ and $\sqrt{2 p}-\sqrt{x}-\sqrt{y}$ is non-negative and as small as possible.

IMO Shortlist 1995

Sequences

11 Does there exist a sequence $F(1), F(2), F(3), \ldots$ of non-negative integers that simultaneously satisfies the following three conditions?
(a) Each of the integers $0,1,2, \ldots$ occurs in the sequence. (b) Each positive integer occurs in the sequence infinitely often. (c) For any $n \geq 2$,

$$
F\left(F\left(n^{163}\right)\right)=F(F(n))+F(F(361)) .
$$

52 Find the maximum value of x_{0} for which there exists a sequence $x_{0}, x_{1} \cdots, x_{1995}$ of positive reals with $x_{0}=x_{1995}$, such that

$$
x_{i-1}+\frac{2}{x_{i-1}}=2 x_{i}+\frac{1}{x_{i}},
$$

for all $i=1, \cdots, 1995$.
3 For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide x, and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1)=2$. For x having $p(x)=2$, define $q(x)=1$. Consider the sequence $x_{0}, x_{1}, x_{2}, \ldots$ defined by $x_{0}=1$ and

$$
x_{n+1}=\frac{x_{n} p\left(x_{n}\right)}{q\left(x_{n}\right)}
$$

for $n \geq 0$. Find all n such that $x^{n}=1995$.
4 Suppose that $x_{1}, x_{2}, x_{3}, \ldots$ are positive real numbers for which

$$
x_{n}^{n}=\sum_{j=0}^{n-1} x_{n}^{j}
$$

for $n=1,2,3, \ldots$ Prove that $\forall n$,

$$
2-\frac{1}{2^{n-1}} \leq x_{n}<2-\frac{1}{2^{n}}
$$

5 For positive integers n, the numbers $f(n)$ are defined inductively as follows: $f(1)=1$, and for every positive integer $n, f(n+1)$ is the greatest integer m such that there is an arithmetic progression of positive integers $a_{1}<a_{2}<\ldots<a_{m}=n$ for which

$$
f\left(a_{1}\right)=f\left(a_{2}\right)=\ldots=f\left(a_{m}\right) .
$$

Prove that there are positive integers a and b such that $f(a n+b)=n+2$ for every positive integer n.

IMO Shortlist 1995

6 Let \mathbb{N} denote the set of all positive integers. Prove that there exists a unique function $f: \mathbb{N} \mapsto \mathbb{N}$ satisfying

$$
f(m+f(n))=n+f(m+95)
$$

for all m and n in \mathbb{N}. What is the value of $\sum_{k=1}^{19} f(k)$?

