IMO Shortlist 1991

11 Given a point P inside a triangle $\triangle A B C$. Let D, E, F be the orthogonal projections of the point P on the sides $B C, C A, A B$, respectively. Let the orthogonal projections of the point A on the lines $B P$ and $C P$ be M and N, respectively. Prove that the lines $M E, N F, B C$ are concurrent.

Original formulation:

Let $A B C$ be any triangle and P any point in its interior. Let P_{1}, P_{2} be the feet of the perpendiculars from P to the two sides $A C$ and $B C$. Draw $A P$ and $B P$, and from C drop perpendiculars to $A P$ and $B P$. Let Q_{1} and Q_{2} be the feet of these perpendiculars. Prove that the lines $Q_{1} P_{2}, Q_{2} P_{1}$, and $A B$ are concurrent.

2 . $A B C$ is an acute-angled triangle. M is the midpoint of $B C$ and P is the point on $A M$ such that $M B=M P . H$ is the foot of the perpendicular from P to $B C$. The lines through H perpendicular to $P B, P C$ meet $A B, A C$ respectively at Q, R. Show that $B C$ is tangent to the circle through Q, H, R at H.

Original Formulation:

For an acute triangle $A B C, M$ is the midpoint of the segment $B C, P$ is a point on the segment $A M$ such that $P M=B M, H$ is the foot of the perpendicular line from P to $B C, Q$ is the point of intersection of segment $A B$ and the line passing through H that is perpendicular to $P B$, and finally, R is the point of intersection of the segment $A C$ and the line passing through H that is perpendicular to $P C$. Show that the circumcircle of $Q H R$ is tangent to the side $B C$ at point H.

3 Let S be any point on the circumscribed circle of $P Q R$. Then the feet of the perpendiculars from S to the three sides of the triangle lie on the same straight line. Denote this line by $l(S, P Q R)$. Suppose that the hexagon $A B C D E F$ is inscribed in a circle. Show that the four lines $l(A, B D F), l(B, A C E), l(D, A B F)$, and $l(E, A B C)$ intersect at one point if and only if $C D E F$ is a rectangle.

4 Let $A B C$ be a triangle and P an interior point of $A B C$. Show that at least one of the angles $\angle P A B, \angle P B C, \angle P C A$ is less than or equal to 30°.

5 In the triangle $A B C$, with $\angle A=60^{\circ}$, a parallel $I F$ to $A C$ is drawn through the incenter I of the triangle, where F lies on the side $A B$. The point P on the side $B C$ is such that $3 B P=B C$. Show that $\angle B F P=\frac{\angle B}{2}$.

7 $A B C D$ is a terahedron: $A D+B D=A C+B C, B D+C D=B A+C A, C D+A D=$ $C B+A B, M, N, P$ are the mid points of $B C, C A, A B . O A=O B=O C=O D$. Prove that $\angle M O P=\angle N O P=\angle N O M$.

IMO Shortlist 1991

$8 S$ be a set of n points in the plane. No three points of S are collinear. Prove that there exists a set P containing $2 n-5$ points satisfying the following condition: In the interior of every triangle whose three vertices are elements of S lies a point that is an element of P.
9 In the plane we are given a set E of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of E, there exist at least 1593 other points of E to which it is joined by a path. Show that there exist six points of E every pair of which are joined by a path.
Alternative version: Is it possible to find a set E of 1991 points in the plane and paths joining certain pairs of the points in E such that every point of E is joined with a path to at least 1592 other points of E, and in every subset of six points of E there exist at least two points that are not joined?

10 Suppose G is a connected graph with k edges. Prove that it is possible to label the edges $1,2, \ldots, k$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1 .
[hide="Graph-Definition"]A graph consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices u, v belongs to at most one edge. The graph G is connected if for each pair of distinct vertices x, y there is some sequence of vertices $x=v_{0}, v_{1}, v_{2}, \cdots, v_{m}=y$ such that each pair $v_{i}, v_{i+1}(0 \leq i<m)$ is joined by an edge of G.
11 Prove that $\sum_{k=0}^{995} \frac{(-1)^{k}}{1991-k}\binom{1991-k}{k}=\frac{1}{1991}$
12 Let $S=\{1,2,3, \cdots, 280\}$. Find the smallest integer n such that each n-element subset of S contains five numbers which are pairwise relatively prime.

13 Given any integer $n \geq 2$, assume that the integers $a_{1}, a_{2}, \ldots, a_{n}$ are not divisible by n and, moreover, that n does not divide $\sum_{i=1}^{n} a_{i}$. Prove that there exist at least n different sequences $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ consisting of zeros or ones such $\sum_{i=1}^{n} e_{i} \cdot a_{i}$ is divisible by n.

14 Let a, b, c be integers and p an odd prime number. Prove that if $f(x)=a x^{2}+b x+c$ is a perfect square for $2 p-1$ consecutive integer values of x, then p divides $b^{2}-4 a c$.

15 Let a_{n} be the last nonzero digit in the decimal representation of the number $n!$. Does the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ become periodic after a finite number of terms?

16 Let $n>6$ be an integer and $a_{1}, a_{2}, \cdots, a_{k}$ be all the natural numbers less than n and relatively prime to n. If

$$
a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{k}-a_{k-1}>0,
$$

prove that n must be either a prime number or a power of 2 .

IMO Shortlist 1991

17 Find all positive integer solutions x, y, z of the equation $3^{x}+4^{y}=5^{z}$.
518 Find the highest degree k of 1991 for which 1991^{k} divides the number

$$
1990^{1991^{1992}}+1992^{1991^{1990}}
$$

19 Let α be a rational number with $0<\alpha<1$ and $\cos (3 \pi \alpha)+2 \cos (2 \pi \alpha)=0$. Prove that $\alpha=\frac{2}{3}$.
20 Let α be the positive root of the equation $x^{2}=1991 x+1$. For natural numbers m and n define

$$
m * n=m n+\lfloor\alpha m\rfloor\lfloor\alpha n\rfloor .
$$

Prove that for all natural numbers p, q, and r,

$$
(p * q) * r=p *(q * r) .
$$

21 Let $f(x)$ be a monic polynomial of degree 1991 with integer coefficients. Define $g(x)=$ $f^{2}(x)-9$. Show that the number of distinct integer solutions of $g(x)=0$ cannot exceed 1995.

22 Real constants a, b, c are such that there is exactly one square all of whose vertices lie on the cubic curve $y=x^{3}+a x^{2}+b x+c$. Prove that the square has sides of length $\sqrt[4]{72}$.

23 Let f and g be two integer-valued functions defined on the set of all integers such that
(a) $f(m+f(f(n)))=-f(f(m+1)-n$ for all integers m and n; (b) g is a polynomial function with integer coefficients and $\mathrm{g}(\mathrm{n})=g(f(n)) \forall n \in \mathbb{Z}$.

24 An odd integer $n \geq 3$ is said to be nice if and only if there is at least one permutation a_{1}, \cdots, a_{n} of $1, \cdots, n$ such that the n sums $a_{1}-a_{2}+a_{3}-\cdots-a_{n-1}+a_{n}, a_{2}-a_{3}+a_{3}-\cdots-a_{n}+a_{1}$, $a_{3}-a_{4}+a_{5}-\cdots-a_{1}+a_{2}, \cdots, a_{n}-a_{1}+a_{2}-\cdots-a_{n-2}+a_{n-1}$ are all positive. Determine the set of all 'nice' integers.

25 Suppose that $n \geq 2$ and $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers between 0 and 1 (inclusive). Prove that for some index i between 1 and $n-1$ the inequality

$$
x_{i}\left(1-x_{i+1}\right) \geq \frac{1}{4} x_{1}\left(1-x_{n}\right)
$$

26 Let $n \geq 2, n \in \mathbb{N}$ and let $p, a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n} \in \mathbb{R}$ satisfying $\frac{1}{2} \leq p \leq 1,0 \leq a_{i}$, $0 \leq b_{i} \leq p, i=1, \ldots, n$, and

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i} .
$$

IMO Shortlist 1991

Prove the inequality:

$$
\sum_{i=1}^{n} b_{i} \prod_{j=1, j \neq i}^{n} a_{j} \leq \frac{p}{(n-1)^{n-1}} .
$$

27 Determine the maximum value of the sum

$$
\sum_{i<j} x_{i} x_{j}\left(x_{i}+x_{j}\right)
$$

over all n-tuples $\left(x_{1}, \ldots, x_{n}\right)$, satisfying $x_{i} \geq 0$ and $\sum_{i=1}^{n} x_{i}=1$.
28 An infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ of real numbers is said to be bounded if there is a constant C such that $\left|x_{i}\right| \leq C$ for every $i \geq 0$. Given any real number $a>1$, construct a bounded infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that

$$
\left|x_{i}-x_{j}\right||i-j|^{a} \geq 1
$$

for every pair of distinct nonnegative integers i, j.
29 We call a set S on the real line \mathbb{R} superinvariant if for any stretching A of the set by the transformation taking x to $A(x)=x_{0}+a\left(x-x_{0}\right), a>0$ there exists a translation $B, B(x)=$ $x+b$, such that the images of S under A and B agree; i.e., for any $x \in S$ there is a $y \in S$ such that $A(x)=B(y)$ and for any $t \in S$ there is a $u \in S$ such that $B(t)=A(u)$. Determine all superinvariant sets.

30 Two students A and B are playing the following game: Each of them writes down on a sheet of paper a positive integer and gives the sheet to the referee. The referee writes down on a blackboard two integers, one of which is the sum of the integers written by the players. After that, the referee asks student A : Can you tell the integer written by the other student? If A answers no, the referee puts the same question to student B. If B answers no, the referee puts the question back to A, and so on. Assume that both students are intelligent and truthful. Prove that after a finite number of questions, one of the students will answer yes.

