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Géza Kós

Nairi Sedrakyan
Damir Yeliussizov

Kuat Yessenov





Algebra

A1. Determine all functions f : R Ñ R such that the equality

fprxsyq � fpxqrfpyqs. (1)

holds for all x, y P R. Here, by rxs we denote the greatest integer not exceeding x.

(France)

Answer. fpxq � const � C, where C � 0 or 1 ¨ C   2.

Solution 1. First, setting x � 0 in (1) we get

fp0q � fp0qrfpyqs (2)

for all y P R. Now, two cases are possible.

Case 1. Assume that fp0q � 0. Then from (2) we conclude that rfpyqs � 1 for all
y P R. Therefore, equation (1) becomes fprxsyq � fpxq, and substituting y � 0 we have
fpxq � fp0q � C � 0. Finally, from rfpyqs � 1 � rCs we obtain that 1 ¨ C   2.

Case 2. Now we have fp0q � 0. Here we consider two subcases.
Subcase 2a. Suppose that there exists 0   α   1 such that fpαq � 0. Then setting x � α

in (1) we obtain 0 � fp0q � fpαqrfpyqs for all y P R. Hence, rfpyqs � 0 for all y P R. Finally,
substituting x � 1 in (1) provides fpyq � 0 for all y P R, thus contradicting the condition
fpαq � 0.

Subcase 2b. Conversely, we have fpαq � 0 for all 0 ¨ α   1. Consider any real z; there

exists an integer N such that α � z

N
P r0, 1q (one may set N � rzs�1 if z © 0 and N � rzs�1

otherwise). Now, from (1) we get fpzq � fprNsαq � fpNqrfpαqs � 0 for all z P R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that rfpyqs � 0 for some y; then the substitution x � 1 provides
fpyq � fp1qrfpyqs � 0. Hence, if rfpyqs � 0 for all y, then fpyq � 0 for all y. This function
obviously satisfies the problem conditions.

So we are left to consider the case when rfpaqs � 0 for some a. Then we have

fprxsaq � fpxqrfpaqs, or fpxq � fprxsaqrfpaqs . (3)

This means that fpx1q � fpx2q whenever rx1s � rx2s, hence fpxq � fprxsq, and we may assume
that a is an integer.

Now we have
fpaq � f

�
2a � 1

2

� � fp2aq �f �1

2

�� � fp2aqrfp0qs;
this implies rfp0qs � 0, so we may even assume that a � 0. Therefore equation (3) provides

fpxq � fp0qrfp0qs � C � 0

for each x. Now, condition (1) becomes equivalent to the equation C � CrCs which holds
exactly when rCs � 1.
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A2. Let the real numbers a, b, c, d satisfy the relations a�b�c�d � 6 and a2�b2�c2�d2 � 12.
Prove that

36 ¨ 4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q ¨ 48.

(Ukraine)

Solution 1. Observe that

4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q � � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 6pa2 � b2 � c2 � d2q � 4pa� b� c� dq � 4� � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 52.

Now, introducing x � a� 1, y � b� 1, z � c� 1, t � d� 1, we need to prove the inequalities

16 © x4 � y4 � z4 � t4 © 4,

under the constraint

x2 � y2 � z2 � t2 � pa2 � b2 � c2 � d2q � 2pa� b� c� dq � 4 � 4 (1)

(we will not use the value of x� y � z � t though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

x4 � y4 � z4 � t4 © px2 � y2 � z2 � t2q2
4

� 4.

For the other one, expanding the brackets we note thatpx2 � y2 � z2 � t2q2 � px4 � y4 � z4 � t4q � q,

where q is a nonnegative number, so

x4 � y4 � z4 � t4 ¨ px2 � y2 � z2 � t2q2 � 16,

and we are done.

Comment 1. The estimates are sharp; the lower and upper bounds are attained at p3, 1, 1, 1q andp0, 2, 2, 2q, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways.
The latter estimate, for instance, it can be performed by moving the variables – since we need only
the second of the two shifted conditions.

Solution 2. First, we claim that 0 ¨ a, b, c, d ¨ 3. Actually, we have

a� b� c � 6� d, a2 � b2 � c2 � 12� d2,

hence the power mean inequality

a2 � b2 � c2 © pa� b� cq2
3

rewrites as

12� d2 © p6� dq2
3

ðñ 2dpd� 3q ¨ 0,
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which implies the desired inequalities for d; since the conditions are symmetric, we also have
the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality x2px� 2q2 © 0 for
each real x; this inequality rewrites as 4x3 � x4 ¨ 4x2. It follows thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q ¨ 4pa2 � b2 � c2 � d2q � 48,

as desired.
Now we prove the leftmost inequality in an analogous way. For each x P r0, 3s, we havepx� 1qpx� 1q2px� 3q ¨ 0 which is equivalent to 4x3 � x4 © 2x2 � 4x� 3. This implies thatp4a3�a4q�p4b3� b4q�p4c3� c4q�p4d3�d4q © 2pa2� b2� c2�d2q�4pa� b� c�dq�12 � 36,

as desired.

Comment. It is easy to guess the extremal points p0, 2, 2, 2q and p3, 1, 1, 1q for this inequality. This
provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should
have the form x4 � 4x3 � ax2 � bx� c; moreover, the former polynomial should have roots at 2 (with
an even multiplicity) and 0, while the latter should have roots at 1 (with an even multiplicity) and 3.
These conditions determine the polynomials uniquely.

Solution 3. First, expanding 48 � 4pa2 � b2 � c2 � d2q and applying the AM–GM inequality,
we have

a4 � b4 � c4 � d4 � 48 � pa4 � 4a2q � pb4 � 4b2q � pc4 � 4c2q � pd4 � 4d2q© 2
�?

a4 � 4a2 �?b4 � 4b2 �?c4 � 4c2 �?d4 � 4d2

	� 4p|a3| � |b3| � |c3| � |d3|q © 4pa3 � b3 � c3 � d3q,
which establishes the rightmost inequality.

To prove the leftmost inequality, we first show that a, b, c, d P r0, 3s as in the previous
solution. Moreover, we can assume that 0 ¨ a ¨ b ¨ c ¨ d. Then we have a � b ¨ b � c ¨
2

3
pb� c� dq ¨ 2

3
� 6 � 4.

Next, we show that 4b�b2 ¨ 4c�c2. Actually, this inequality rewrites as pc�bqpb�c�4q ¨ 0,
which follows from the previous estimate. The inequality 4a � a2 ¨ 4b � b2 can be proved
analogously.

Further, the inequalities a ¨ b ¨ c together with 4a � a2 ¨ 4b � b2 ¨ 4c � c2 allow us to
apply the Chebyshev inequality obtaining

a2p4a� a2q � b2p4b� b2q � c2p4c� c2q © 1

3
pa2 � b2 � c2q �4pa� b� cq � pa2 � b2 � c2q�� p12� d2qp4p6� dq � p12� d2qq

3
.

This implies thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q © p12� d2qpd2 � 4d� 12q
3

� 4d3 � d4� 144� 48d� 16d3 � 4d4

3
� 36� 4

3
p3� dqpd� 1qpd2 � 3q. (2)

Finally, we have d2 © 1
4
pa2 � b2 � c2 � d2q � 3 (which implies d ¡ 1); so, the expression

4

3
p3� dqpd� 1qpd2 � 3q in the right-hand part of (2) is nonnegative, and the desired inequality

is proved.

Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3
show that only the condition a2 � b2 � c2 � d2 � 12 is needed for the former one.
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A3. Let x1, . . . , x100 be nonnegative real numbers such that xi � xi�1 � xi�2 ¨ 1 for all
i � 1, . . . , 100 (we put x101 � x1, x102 � x2). Find the maximal possible value of the sum

S � 100̧

i�1

xixi�2.

(Russia)

Answer.
25

2
.

Solution 1. Let x2i � 0, x2i�1 � 1

2
for all i � 1, . . . , 50. Then we have S � 50 � �1

2

�2 � 25

2
. So,

we are left to show that S ¨ 25
2

for all values of xi’s satisfying the problem conditions.

Consider any 1 ¨ i ¨ 50. By the problem condition, we get x2i�1 ¨ 1 � x2i � x2i�1 and
x2i�2 ¨ 1� x2i � x2i�1. Hence by the AM–GM inequality we get

x2i�1x2i�1 � x2ix2i�2 ¨ p1� x2i � x2i�1qx2i�1 � x2ip1� x2i � x2i�1q� px2i � x2i�1qp1� x2i � x2i�1q ¨ �px2i � x2i�1q � p1� x2i � x2i�1q
2


2 � 1

4
.

Summing up these inequalities for i � 1, 2, . . . , 50, we get the desired inequality

50̧

i�1

px2i�1x2i�1 � x2ix2i�2q ¨ 50 � 1

4
� 25

2
.

Comment. This solution shows that a bit more general fact holds. Namely, consider 2n nonnegative
numbers x1, . . . , x2n in a row (with no cyclic notation) and suppose that xi � xi�1 � xi�2 ¨ 1 for all

i � 1, 2, . . . , 2n � 2. Then
2n�2

i̧�1

xixi�2 ¨ n� 1

4
.

The proof is the same as above, though if might be easier to find it (for instance, applying
induction). The original estimate can be obtained from this version by considering the sequence
x1, x2, . . . , x100, x1, x2.

Solution 2. We present another proof of the estimate. From the problem condition, we get

S � 100̧

i�1

xixi�2 ¨ 100̧

i�1

xip1� xi � xi�1q � 100̧

i�1

xi � 100̧

i�1

x2
i � 100̧

i�1

xixi�1� 100̧

i�1

xi � 1

2

100̧

i�1

pxi � xi�1q2.
By the AM–QM inequality, we have

°pxi � xi�1q2 © 1
100

�°pxi � xi�1q�2, so

S ¨ 100̧

i�1

xi � 1

200

�
100̧

i�1

pxi � xi�1q�2 � 100̧

i�1

xi � 2

100

�
100̧

i�1

xi

�2� 2

100

�
100̧

i�1

xi

��
100

2
� 100̧

i�1

xi

�
.

And finally, by the AM–GM inequality

S ¨ 2

100
��1

2

�
100̧

i�1

xi � 100

2
� 100̧

i�1

xi

��2 � 2

100
� �100

4


2 � 25

2
.
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Comment. These solutions are not as easy as they may seem at the first sight. There are two
different optimal configurations in which the variables have different values, and not all of sums of
three consecutive numbers equal 1. Although it is easy to find the value 25

2
, the estimates must be

done with care to preserve equality in the optimal configurations.
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A4. A sequence x1, x2, . . . is defined by x1 � 1 and x2k � �xk, x2k�1 � p�1qk�1xk for all
k © 1. Prove that x1 � x2 � � � � � xn © 0 for all n © 1.

(Austria)

Solution 1. We start with some observations. First, from the definition of xi it follows that
for each positive integer k we have

x4k�3 � x2k�1 � �x4k�2 and x4k�1 � x4k � �x2k � xk. (1)

Hence, denoting Sn � °n

i�1 xi, we have

S4k � ķ

i�1

�px4k�3 � x4k�2q � px4k�1 � x4kq� � ķ

i�1

p0� 2xkq � 2Sk, (2)

S4k�2 � S4k � px4k�1 � x4k�2q � S4k. (3)

Observe also that Sn � °n

i�1 xi � °n

i�1 1 � n pmod 2q.
Now we prove by induction on k that Si © 0 for all i ¨ 4k. The base case is valid since

x1 � x3 � x4 � 1, x2 � �1. For the induction step, assume that Si © 0 for all i ¨ 4k. Using
the relations (1)–(3), we obtain

S4k�4 � 2Sk�1 © 0, S4k�2 � S4k © 0, S4k�3 � S4k�2 � x4k�3 � S4k�2 � S4k�4

2
© 0.

So, we are left to prove that S4k�1 © 0. If k is odd, then S4k � 2Sk © 0; since k is odd, Sk

is odd as well, so we have S4k © 2 and hence S4k�1 � S4k � x4k�1 © 1.
Conversely, if k is even, then we have x4k�1 � x2k�1 � xk�1, hence S4k�1 � S4k � x4k�1 �

2Sk � xk�1 � Sk � Sk�1 © 0. The step is proved.

Solution 2. We will use the notation of Sn and the relations (1)–(3) from the previous
solution.

Assume the contrary and consider the minimal n such that Sn�1   0; surely n © 1, and
from Sn © 0 we get Sn � 0, xn�1 � �1. Hence, we are especially interested in the set
M � tn : Sn � 0u; our aim is to prove that xn�1 � 1 whenever n P M thus coming to a
contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only
of even numbers, (ii) 2 P M , and (iii) for every even n © 4 we have n P M ðñ rn{4s P M .
Actually, (i) holds since Sn � n pmod 2q, (ii) is straightforward, while (iii) follows from the
relations S4k�2 � S4k � 2Sk.

Now, we are left to prove that xn�1 � 1 if n P M . We use the induction on n. The base
case is n � 2, that is, the minimal element of M ; here we have x3 � 1, as desired.

For the induction step, consider some 4 ¨ n P M and let m � rn{4s P M ; then m is even,
and xm�1 � 1 by the induction hypothesis. We prove that xn�1 � xm�1 � 1. If n � 4m then we
have xn�1 � x2m�1 � xm�1 since m is even; otherwise, n � 4m�2, and xn�1 � �x2m�2 � xm�1,
as desired. The proof is complete.

Comment. Using the inductive definition of set M , one can describe it explicitly. Namely, M consists
exactly of all positive integers not containing digits 1 and 3 in their 4-base representation.
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A5. Denote by Q� the set of all positive rational numbers. Determine all functions f : Q� Ñ Q�
which satisfy the following equation for all x, y P Q�:

f
�
fpxq2y� � x3fpxyq. (1)

(Switzerland)

Answer. The only such function is fpxq � 1

x
.

Solution. By substituting y � 1, we get

f
�
fpxq2� � x3fpxq. (2)

Then, whenever fpxq � fpyq, we have

x3 � f
�
fpxq2�
fpxq � f

�
fpyq2�
fpyq � y3

which implies x � y, so the function f is injective.

Now replace x by xy in (2), and apply (1) twice, second time to
�
y, fpxq2� instead of px, yq:

f
�
fpxyq2� � pxyq3fpxyq � y3f

�
fpxq2y� � f

�
fpxq2fpyq2�.

Since f is injective, we get

fpxyq2 � fpxq2fpyq2,
fpxyq � fpxqfpyq.

Therefore, f is multiplicative. This also implies fp1q � 1 and fpxnq � fpxqn for all integers n.

Then the function equation (1) can be re-written as

f
�
fpxq�2fpyq � x3fpxqfpyq,

f
�
fpxq� �ax3fpxq. (3)

Let gpxq � xfpxq. Then, by (3), we have

g
�
gpxq� � g

�
xfpxq� � xfpxq � f�xfpxq� � xfpxq2f�fpxq� �� xfpxq2ax3fpxq � �xfpxq�5{2 � �gpxq�5{2,

and, by induction,

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn (4)

for every positive integer n.

Consider (4) for a fixed x. The left-hand side is always rational, so
�
gpxq�p5{2qn must be

rational for every n. We show that this is possible only if gpxq � 1. Suppose that gpxq � 1,
and let the prime factorization of gpxq be gpxq � pα1

1 . . . pαk

k where p1, . . . , pk are distinct primes
and α1, . . . , αk are nonzero integers. Then the unique prime factorization of (4) is

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn � p
p5{2qnα1

1 � � � pp5{2qnαk

k
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where the exponents should be integers. But this is not true for large values of n, for examplep5

2
qnα1 cannot be a integer number when 2n � �� α1. Therefore, gpxq � 1 is impossible.

Hence, gpxq � 1 and thus fpxq � 1

x
for all x.

The function fpxq � 1

x
satisfies the equation (1):

fpfpxq2yq � 1

fpxq2y � 1�
1

x

�2
y
� x3

xy
� x3fpxyq.

Comment. Among R� Ñ R� functions, fpxq � 1

x
is not the only solution. Another solution is

f1pxq � x3{2. Using transfinite tools, infinitely many other solutions can be constructed.
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A6. Suppose that f and g are two functions defined on the set of positive integers and taking
positive integer values. Suppose also that the equations fpgpnqq � fpnq � 1 and gpfpnqq �
gpnq � 1 hold for all positive integers. Prove that fpnq � gpnq for all positive integer n.

(Germany)

Solution 1. Throughout the solution, by N we denote the set of all positive integers. For
any function h : N Ñ N and for any positive integer k, define hkpxq � h

�
h
�
. . . hloooomoooon

k

pxq . . . �� (in

particular, h0pxq � x).
Observe that f

�
gkpxq� � f

�
gk�1pxq� � 1 � � � � � fpxq � k for any positive integer k, and

similarly g
�
fkpxq� � gpxq � k. Now let a and b are the minimal values attained by f and g,

respectively; say fpnfq � a, gpngq � b. Then we have f
�
gkpnfq� � a� k, g

�
fkpngq� � b� k, so

the function f attains all values from the set Nf � ta, a� 1, . . . u, while g attains all the values
from the set Ng � tb, b� 1, . . . u.

Next, note that fpxq � fpyq implies gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq; surely, the

converse implication also holds. Now, we say that x and y are similar (and write x � y) if
fpxq � fpyq (equivalently, gpxq � gpyq). For every x P N, we define rxs � ty P N : x � yu;
surely, y1 � y2 for all y1, y2 P rxs, so rxs � rys whenever y P rxs.

Now we investigate the structure of the sets rxs.
Claim 1. Suppose that fpxq � fpyq; then x � y, that is, fpxq � fpyq. Consequently, each
class rxs contains at most one element from Nf , as well as at most one element from Ng.

Proof. If fpxq � fpyq, then we have gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq, so x � y. The

second statement follows now from the sets of values of f and g. l
Next, we clarify which classes do not contain large elements.

Claim 2. For any x P N, we have rxs � t1, 2, . . . , b� 1u if and only if fpxq � a. Analogously,rxs � t1, 2, . . . , a� 1u if and only if gpxq � b.

Proof. We will prove that rxs � t1, 2, . . . , b � 1u ðñ fpxq ¡ a; the proof of the second
statement is similar.

Note that fpxq ¡ a implies that there exists some y satisfying fpyq � fpxq�1, so f
�
gpyq� �

fpyq�1 � fpxq, and hence x � gpyq © b. Conversely, if b ¨ c � x then c � gpyq for some y P N,
which in turn follows fpxq � f

�
gpyq� � fpyq � 1 © a� 1, and hence fpxq ¡ a. l

Claim 2 implies that there exists exactly one class contained in t1, . . . , a� 1u (that is, the
class rngs), as well as exactly one class contained in t1, . . . , b�1u (the class rnf s). Assume for a
moment that a ¨ b; then rngs is contained in t1, . . . , b� 1u as well, hence it coincides with rngs.
So, we get that

fpxq � a ðñ gpxq � b ðñ x � nf � ng. (1)

Claim 3. a � b.

Proof. By Claim 2, we have ras � rnf s, so ras should contain some element a1 © b by Claim 2
again. If a � a1, then ras contains two elements © a which is impossible by Claim 1. Therefore,
a � a1 © b. Similarly, b © a. l

Now we are ready to prove the problem statement. First, we establish the following

Claim 4. For every integer d © 0, fd�1pnfq � gd�1pnf q � a� d.

Proof. Induction on d. For d � 0, the statement follows from (1) and Claim 3. Next, for d ¡ 1
from the induction hypothesis we have fd�1pnfq � f

�
fdpnfq� � f

�
gdpnf q� � fpnf q�d � a�d.

The equality gd�1pnfq � a� d is analogous. l
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Finally, for each x P N, we have fpxq � a � d for some d © 0, so fpxq � f
�
gdpnf q� and

hence x � gdpnf q. It follows that gpxq � g
�
gdpnfq� � gd�1pnf q � a� d � fpxq by Claim 4.

Solution 2. We start with the same observations, introducing the relation � and proving
Claim 1 from the previous solution.

Note that fpaq ¡ a since otherwise we have fpaq � a and hence gpaq � g
�
fpaq� � gpaq � 1,

which is false.

Claim 21. a � b.

Proof. We can assume that a ¨ b. Since fpaq © a � 1, there exists some x P N such that
fpaq � fpxq � 1, which is equivalent to fpaq � f

�
gpxq� and a � gpxq. Since gpxq © b © a, by

Claim 1 we have a � gpxq © b, which together with a ¨ b proves the Claim. l
Now, almost the same method allows to find the values fpaq and gpaq.

Claim 31. fpaq � gpaq � a� 1.

Proof. Assume the contrary; then fpaq © a � 2, hence there exist some x, y P N such that
fpxq � fpaq � 2 and fpyq � gpxq (as gpxq © a � b). Now we get fpaq � fpxq � 2 � f

�
g2pxq�,

so a � g2pxq © a, and by Claim 1 we get a � g2pxq � g
�
fpyq� � 1 � gpyq © 1 � a; this is

impossible. The equality gpaq � a� 1 is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for n © a.

Claim 41. For each integer x © a, we have fpxq � gpxq � x� 1.

Proof. Induction on x. The base case x � a is provided by Claim 31, while the induction
step follows from fpx � 1q � f

�
gpxq� � fpxq � 1 � px � 1q � 1 and the similar computation

for gpx� 1q.
Finally, for an arbitrary n P N we have gpnq © a, so by Claim 41 we have fpnq � 1 �

f
�
gpnq� � gpnq � 1, hence fpnq � gpnq.

Comment. It is not hard now to describe all the functions f : N Ñ N satisfying the property fpfpnqq �
fpnq � 1. For each such function, there exists n0 P N such that fpnq � n� 1 for all n © n0, while for
each n   n0, fpnq is an arbitrary number greater than of equal to n0 (these numbers may be different
for different n   n0).
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A7. Let a1, . . . , ar be positive real numbers. For n ¡ r, we inductively define

an � max
1¨k¨n�1

pak � an�kq. (1)

Prove that there exist positive integers ℓ ¨ r and N such that an � an�ℓ � aℓ for all n © N .

(Iran)

Solution 1. First, from the problem conditions we have that each an (n ¡ r) can be expressed
as an � aj1 � aj2 with j1, j2   n, j1 � j2 � n. If, say, j1 ¡ r then we can proceed in the same
way with aj1 , and so on. Finally, we represent an in a form

an � ai1 � � � � � aik , (2)

1 ¨ ij ¨ r, i1 � � � � � ik � n. (3)

Moreover, if ai1 and ai2 are the numbers in (2) obtained on the last step, then i1 � i2 ¡ r.
Hence we can adjust (3) as

1 ¨ ij ¨ r, i1 � � � � � ik � n, i1 � i2 ¡ r. (4)

On the other hand, suppose that the indices i1, . . . , ik satisfy the conditions (4). Then,
denoting sj � i1 � � � � � ij , from (1) we have

an � ask
© ask�1

� aik © ask�2
� aik�1

� aik © � � � © ai1 � � � � � aik .

Summarizing these observations we get the following

Claim. For every n ¡ r, we have

an � maxtai1 � � � � � aik : the collection pi1, . . . , ikq satisfies (4)u. l
Now we denote

s � max
1¨i¨r

ai

i

and fix some index ℓ ¨ r such that s � aℓ

ℓ
.

Consider some n © r2ℓ�2r and choose an expansion of an in the form (2), (4). Then we have
n � i1�� � ��ik ¨ rk, so k © n{r © rℓ�2. Suppose that none of the numbers i3, . . . , ik equals ℓ.
Then by the pigeonhole principle there is an index 1 ¨ j ¨ r which appears among i3, . . . , ik
at least ℓ times, and surely j � ℓ. Let us delete these ℓ occurrences of j from pi1, . . . , ikq, and
add j occurrences of ℓ instead, obtaining a sequence pi1, i2, i13, . . . , i1k1q also satisfying (4). By
Claim, we have

ai1 � � � � � aik � an © ai1 � ai2 � ai1
3
� � � � � ai1

k1 ,
or, after removing the coinciding terms, ℓaj © jaℓ, so

aℓ

ℓ
¨ aj

j
. By the definition of ℓ, this

means that ℓaj � jaℓ, hence

an � ai1 � ai2 � ai1
3
� � � � � ai1

k1 .
Thus, for every n © r2ℓ � 2r we have found a representation of the form (2), (4) with ij � ℓ

for some j © 3. Rearranging the indices we may assume that ik � ℓ.

Finally, observe that in this representation, the indices pi1, . . . , ik�1q satisfy the condi-
tions (4) with n replaced by n � ℓ. Thus, from the Claim we get

an�ℓ � aℓ © pai1 � � � � � aik�1
q � aℓ � an,

which by (1) implies
an � an�ℓ � aℓ for each n © r2ℓ � 2r,

as desired.
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Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some
index 1 ¨ ℓ ¨ r such that

aℓ

ℓ
� s � max

1¨i¨r

ai

i
.

Now, we introduce the sequence pbnq as bn � an � sn; then bℓ � 0.
We prove by induction on n that bn ¨ 0, and pbnq satisfies the same recurrence relation

as panq. The base cases n ¨ r follow from the definition of s. Now, for n ¡ r from the
induction hypothesis we have

bn � max
1¨k¨n�1

pak � an�kq � ns � max
1¨k¨n�1

pbk � bn�k � nsq � ns � max
1¨k¨n�1

pbk � bn�kq ¨ 0,

as required.

Now, if bk � 0 for all 1 ¨ k ¨ r, then bn � 0 for all n, hence an � sn, and the statement is
trivial. Otherwise, define

M � max
1¨i¨r

|bi|, ε � mint|bi| : 1 ¨ i ¨ r, bi   0u.
Then for n ¡ r we obtain

bn � max
1¨k¨n�1

pbk � bn�kq © bℓ � bn�ℓ � bn�ℓ,

so
0 © bn © bn�ℓ © bn�2ℓ © � � � © �M.

Thus, in view of the expansion (2), (3) applied to the sequence pbnq, we get that each bn is
contained in a set

T � tbi1 � bi2 � � � � � bik : i1, . . . , ik ¨ ru X r�M, 0s
We claim that this set is finite. Actually, for any x P T , let x � bi1 � � � � � bik (i1, . . . , ik ¨ r).

Then among bij ’s there are at most
M

ε
nonzero terms (otherwise x   M

ε
� p�εq   �M). Thus

x can be expressed in the same way with k ¨ M

ε
, and there is only a finite number of such

sums.

Finally, for every t � 1, 2, . . . , ℓ we get that the sequence

br�t, br�t�ℓ, br�t�2ℓ, . . .

is non-decreasing and attains the finite number of values; therefore it is constant from some
index. Thus, the sequence pbnq is periodic with period ℓ from some index N , which means that

bn � bn�ℓ � bn�ℓ � bℓ for all n ¡ N � ℓ,

and hence

an � bn � ns � pbn�ℓ � pn� ℓqsq � pbℓ � ℓsq � an�ℓ � aℓ for all n ¡ N � ℓ,

as desired.
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A8. Given six positive numbers a, b, c, d, e, f such that a   b   c   d   e   f . Let a�c�e � S

and b� d� f � T . Prove that

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�. (1)

(South Korea)

Solution 1. We define also σ � ac� ce� ae, τ � bd� bf � df . The idea of the solution is to
interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

P pxq � pb� d� fqpx� aqpx� cqpx� eq � pa� c� eqpx� bqpx� dqpx� fq� T px3 � Sx2 � σx� aceq � Spx3 � Tx2 � τx� bdfq. (2)

Surely, P is cubic with leading coefficient S � T ¡ 0. Moreover, we have

P paq � Spa� bqpa� dqpa� fq   0, P pcq � Spc� bqpc � dqpc� fq ¡ 0,

P peq � Spe� bqpe� dqpe� fq   0, P pfq � T pf � aqpf � cqpf � eq ¡ 0.

Hence, each of the intervals pa, cq, pc, eq, pe, fq contains at least one root of P pxq. Since there
are at most three roots at all, we obtain that there is exactly one root in each interval (denote
them by α P pa, cq, β P pc, eq, γ P pe, fq). Moreover, the polynomial P can be factorized as

P pxq � pT � Sqpx� αqpx� βqpx� γq. (3)

Equating the coefficients in the two representations (2) and (3) of P pxq provides

α � β � γ � 2TS

T � S
, αβ � αγ � βγ � Sτ � Tσ

T � S
.

Now, since the numbers α, β, γ are distinct, we have

0   pα� βq2 � pα � γq2 � pβ � γq2 � 2pα� β � γq2 � 6pαβ � αγ � βγq,
which implies

4S2T 2pT � Sq2 � pα� β � γq2 ¡ 3pαβ � αγ � βγq � 3pSτ � Tσq
T � S

,

or
4S2T 2 ¡ 3pT � SqpTσ � Sτq,

which is exactly what we need.

Comment 1. In fact, one can locate the roots of P pxq more narrowly: they should lie in the intervalspa, bq, pc, dq, pe, fq.
Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict)

inequality will also hold by continuity. One can also find when the equality is achieved. This happens
in that case when P pxq is a perfect cube, which immediately implies that b � c � d � ep� α � β � γq,
together with the additional condition that P 2pbq � 0. Algebraically,

6pT � Sqb� 4TS � 0 ðñ 3bpa� 4b� fq � 2pa� 2bqp2b � fqðñ f � bp4b� aq
2a� b

� b

�
1� 3pb� aq

2a� b


 ¡ b.

This means that for every pair of numbers a, b such that 0   a   b, there exists f ¡ b such that the
point pa, b, b, b, b, fq is a point of equality.
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Solution 2. Let

U � 1

2

�pe� aq2 � pc� aq2 � pe� cq2� � S2 � 3pac� ae� ceq
and

V � 1

2

�pf � bq2 � pf � dq2 � pd� bq2� � T 2 � 3pbd� bf � dfq.
ThenpL.H.S.q2 � pR.H.S.q2 � p2ST q2 � pS � T q�S � 3pbd� bf � dfq � T � 3pac� ae� ceq� �� 4S2T 2 � pS � T q�SpT 2 � V q � T pS2 � Uq� � pS � T qpSV � TUq � ST pT � Sq2,
and the statement is equivalent withpS � T qpSV � TUq ¡ ST pT � Sq2. (4)

By the Cauchy-Schwarz inequality,pS � T qpTU � SV q © �?S � TU �?T � SV
�2 � ST

�?
U �?V

�2
. (5)

Estimate the quantities
?

U and
?

V by the QM–AM inequality with the positive terms pe�cq2
and pd� bq2 being omitted:?

U �?V ¡pe� aq2 � pc� aq2
2

�pf � bq2 � pf � dq2
2¡ pe� aq � pc� aq

2
� pf � bq � pf � dq

2
� �f � d

2
� b

2


� �e

2
� c

2
� a
	� pT � Sq � 3

2
pe� dq � 3

2
pc � bq ¡ T � S. (6)

The estimates (5) and (6) prove (4) and hence the statement.

Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let s � c � e.
Note that pc� bqpc � dq � pe� fqpe� dq � pe� fqpc� bq   0,

since each summand is negative. This rewrites aspbd� bf � dfq � pac � ce� aeq   pc� eqpb� d� f � a� c� eq, or

τ � σ   spT � Sq. (7)

Then we have

Sτ � Tσ � Spτ � σq � pS � T qσ   SspT � Sq � pS � T qpce� asq¨ SspT � Sq � pS � T q�s2

4
� pS � sqs
 � s

�
2ST � 3

4
pS � T qs
 .

Using this inequality together with the AM–GM inequality we get
3

4
pS � T qpSτ � Tσq  d3

4
pS � T qs�2ST � 3

4
pS � T qs
¨ 3

4
pS � T qs� 2ST � 3

4
pS � T qs

2
� ST.

Hence,

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�.
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Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic
polynomial qpxq � px� bqpx� dqpx� fq � px� aqpx� cqpx� eq.
Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of
the solution is to change the values of variables a, . . . , f keeping the left-hand side unchanged
and increasing the right-hand side; it will lead to a simpler inequality which can be proved in
a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities a ¨ b ¨ c ¨ d ¨
e ¨ f ; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the
values of σ and τ . Then the left-hand side of (1) remains unchanged, while the right-hand
side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed
values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.

Lemma. Let x, y, z ¡ 0; denote Upx, y, zq � x� y � z, υpx, y, zq � xy � xz � yz. Suppose that
x1 � y1 � x � y but |x� y| © |x1 � y1|; then we have Upx1, y1, zq � Upx, y, zq and υpx1, y1, zq ©
υpx, y, zq with equality achieved only when |x� y| � |x1 � y1|.
Proof. The first equality is obvious. For the second, we have

υpx1, y1, zq � zpx1 � y1q � x1y1 � zpx1 � y1q � px1 � y1q2 � px1 � y1q2
4© zpx � yq � px� yq2 � px� yq2

4
� υpx, y, zq,

with the equality achieved only for px1 � y1q2 � px � yq2 ðñ |x1 � y1| � |x � y|, as desired.l
Now, we apply Lemma several times making the following changes. For each change, we

denote the new values by the same letters to avoid cumbersome notations.

1. Let k � d� c

2
. Replace pb, c, d, eq by pb� k, c� k, d� k, e� kq. After the change we have

a   b   c � d   e   f , the values of S, T remain unchanged, but σ, τ strictly increase by
Lemma.

2. Let ℓ � e� d

2
. Replace pc, d, e, fq by pc� ℓ, d� ℓ, e� ℓ, f � ℓq. After the change we have

a   b   c � d � e   f , the values of S, T remain unchanged, but σ, τ strictly increase by the
Lemma.

3. Finally, let m � c� b

3
. Replace pa, b, c, d, e, fq by pa�2m, b�2m, c�m, d�m, e�m, f�mq.

After the change, we have a   b � c � d � e   f and S, T are unchanged. To check (iii),
we observe that our change can be considered as a composition of two changes: pa, b, c, dq Ñpa�m, b�m, c�m, d�mq and pa, b, e, fq Ñ pa�m, b�m, e�m, f �mq. It is easy to see that
each of these two consecutive changes satisfy the conditions of the Lemma, hence the values
of σ and τ increase.

Finally, we come to the situation when a   b � c � d � e   f , and we need to prove the
inequality

2pa� 2bqp2b� fq ©b3pa� 4b� fq�pa� 2bqpb2 � 2bfq � p2b� fqp2ab� b2q��b3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�. (8)

Now, observe that

2 � 2pa� 2bqp2b� fq � 3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�.
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Hence p4q rewrites as

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�© 2
b

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�,
which is simply the AM–GM inequality.

Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if
some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side
of (1). Further, if b � c � d � e, then we need equality in p4q; this means that we apply AM–GM to
equal numbers, that is,

3bpa� 4b� fq � pa� 2bqpb� 2fq � p2a� bqp2b � fq,
which leads to the same equality as in Comment 1.



Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of
other singers such that he wishes to perform later than all the singers from that set. Can it
happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?

(Austria)

Answer. Yes, such an example exists.

Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we
say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of
these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is
20-realizable.

We start with the following simple

Lemma. Suppose that numbers n1, n2 are realizable by respectively k1 and k2 singers. Then
the number n1n2 is pk1 � k2q-realizable.

Proof. Let the singers A1, . . . , Ak1
(with some wishes among them) realize n1, and the singers B1,

. . . , Bk2
(with some wishes among them) realize n2. Add to each singer Bi the wish to perform

later than all the singers Aj . Then, each good order of the obtained set of singers has the formpAi1 , . . . , Aik1
, Bj1, . . . , Bjk2

q, where pAi1 , . . . , Aik1
q is a good order for Ai’s and pBj1, . . . , Bjk2

q
is a good order for Bj ’s. Conversely, each order of this form is obviously good. Hence, the
number of good orders is n1n2. l

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers
and realizing the numbers 5, 6 and 67, respectively. Thus the number 2010 � 6 � 5 � 67 will be
realizable by 4 � 3 � 13 � 20 singers. These companies of singers are shown in Figs. 1–3; the
wishes are denoted by arrows, and the number of good orders for each Figure stands below in
the brackets.

a b

c d

(5)

Fig. 1

(3)

Fig. 2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

x

y

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders pa, b, c, dq, pa, b, d, cq, pb, a, c, dq, pb, a, d, cq,pb, d, a, cq. For Fig. 2, each of 6 orders is good since there are no wishes.
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Finally, for Fig. 3, the order of a1, . . . , a11 is fixed; in this line, singer x can stand before
each of ai (i ¨ 9), and singer y can stand after each of aj (j © 5), thus resulting in 9 � 7 � 63
cases. Further, the positions of x and y in this line determine the whole order uniquely unless
both of them come between the same pair pai, ai�1q (thus 5 ¨ i ¨ 8); in the latter cases, there
are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders
is 63� 4 � 67, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the
original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replac-
ing 20 by a smaller number. Here we present some improvements of the example leading to a smaller
number of singers.

Surely, each example with   20 singers can be filled with some “super-stars” who should perform
at the very end in a fixed order. Hence each of these improvements provides a different solution for
the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest
that there are many other examples.

1. Instead of building the examples realizing 5 and 6, it is more economic to make an example
realizing 30; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown
in Fig. 4; hence the number 20 can be decreased to 19 or 18.

For Fig. 4a, the order of a1, . . . , a4 is fixed, there are 5 ways to add x into this order, and there
are 6 ways to add y into the resulting order of a1, . . . , a4, x. Hence there are 5 � 6 � 30 good orders.

On Fig. 4b, for 5 singers a, b1, b2, c1, c2 there are 5! � 120 orders at all. Obviously, exactly one half
of them satisfies the wish b1 � b2, and exactly one half of these orders satisfies another wish c1 � c2;
hence, there are exactly 5!{4 � 30 good orders.
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a
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b)
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b3 b4
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a7

a8

c9 c10

c11

x

y
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Fig. 4 Fig. 5 Fig. 6

2. One can merge the examples for 30 and 67 shown in Figs. 4b and 3 in a smarter way, obtaining
a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to grouptb1, . . . , b5u means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of b1, . . . , b5, a6, . . . , a11 satisfying
all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each
of these orders can be complemented by x and y in exactly 67 ways, hence obtaining 30 � 67 � 2010
good orders at all.

Analogously, one can merge the examples in Figs. 1–3 to represent 2010 by 13 singers as is shown
in Fig. 6.
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b3
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b4
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Fig. 7 Fig. 8

3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in
Fig. 7 shows how 10 singers can represent 67. Moreover, even a company of 10 singers representing 2010
can be found; this company is shown in Fig. 8.
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C2. On some planet, there are 2N countries (N © 4). Each country has a flag N units wide
and one unit high composed of N fields of size 1� 1, each field being either yellow or blue. No
two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an N�N square so
that all N fields on its main diagonal will have the same color. Determine the smallest positive
integer M such that among any M distinct flags, there exist N flags forming a diverse set.

(Croatia)

Answer. M � 2N�2 � 1.

Solution. When speaking about the diagonal of a square, we will always mean the main
diagonal.

Let MN be the smallest positive integer satisfying the problem condition. First, we show
that MN ¡ 2N�2. Consider the collection of all 2N�2 flags having yellow first squares and blue
second ones. Obviously, both colors appear on the diagonal of each N � N square formed by
these flags.

We are left to show that MN ¨ 2N�2� 1, thus obtaining the desired answer. We start with
establishing this statement for N � 4.

Suppose that we have 5 flags of length 4. We decompose each flag into two parts of 2 squares
each; thereby, we denote each flag as LR, where the 2� 1 flags L, R P S � tBB, BY, YB, YYu
are its left and right parts, respectively. First, we make two easy observations on the flags 2�1
which can be checked manually.

(i) For each A P S, there exists only one 2 � 1 flag C P S (possibly C � A) such that A

and C cannot form a 2 � 2 square with monochrome diagonal (for part BB, that is YY, and
for BY that is YB).

(ii) Let A1, A2, A3 P S be three distinct elements; then two of them can form a 2� 2 square
with yellow diagonal, and two of them can form a 2� 2 square with blue diagonal (for all parts
but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are
(YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively.
The total number of flags is 5 ¨ rℓ, hence one of the factors (say, r) should be at least 3. On
the other hand, ℓ, r ¨ 4, so there are two flags with coinciding right part; let them be L1R1

and L2R1 (L1 � L2).
Next, since r © 3, there exist some flags L3R3 and L4R4 such that R1, R3, R4 are distinct.

Let L1R1 be the remaining flag. By (i), one of the pairs pL1, L1q and pL1, L2q can form a
2� 2 square with monochrome diagonal; we can assume that L1, L2 form a square with a blue
diagonal. Finally, the right parts of two of the flags L1R1, L3R3, L4R4 can also form a 2 � 2
square with a blue diagonal by (ii). Putting these 2 � 2 squares on the diagonal of a 4 � 4
square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N ; actually, above we have
proved the base case N � 4. For the induction step, assume that N ¡ 4, consider any 2N�2� 1
flags of length N , and arrange them into a large flag of size p2N�2� 1q �N . This flag contains
a non-monochrome column since the flags are distinct; we may assume that this column is the

first one. By the pigeonhole principle, this column contains at least

R
2N�2 � 1

2

V � 2N�3 � 1

squares of one color (say, blue). We call the flags with a blue first square good.
Consider all the good flags and remove the first square from each of them. We obtain at

least 2N�3 � 1 © MN�1 flags of length N � 1; by the induction hypothesis, N � 1 of them
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can form a square Q with the monochrome diagonal. Now, returning the removed squares, we
obtain a rectangle pN � 1q �N , and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists
by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q

is blue then we can take any of the © 2N�3� 1�pN � 1q ¡ 0 remaining good flags. So, in both
cases we get a desired N �N square.

Solution 2. We present a different proof of the estimate MN ¨ 2N�2 � 1. We do not use the
induction, involving Hall’s lemma on matchings instead.

Consider arbitrary 2N�2 � 1 distinct flags and arrange them into a large p2N�2 � 1q � N

flag. Construct two bipartite graphs Gy � pV Y V 1, Eyq and Gb � pV Y V 1, Ebq with the
common set of vertices as follows. Let V and V 1 be the set of columns and the set of flags
under consideration, respectively. Next, let the edge pc, fq appear in Ey if the intersection of
column c and flag f is yellow, and pc, fq P Eb otherwise. Then we have to prove exactly that
one of the graphs Gy and Gb contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall’s lemma, it means that there exist
two sets of columns Sy, Sb � V such that |EypSyq| ¨ |Sy| � 1 and |EbpSbq| ¨ |Sb| � 1 (in the
left-hand sides, EypSyq and EbpSbq denote respectively the sets of all vertices connected to Sy

and Sb in the corresponding graphs). Our aim is to prove that this is impossible. Note that
Sy, Sb � V since N ¨ 2N�2 � 1.

First, suppose that Sy X Sb � ∅, so there exists some c P Sy X Sb. Note that each
flag is connected to c either in Gy or in Gb, hence EypSyq Y EbpSbq � V 1. Hence we have
2N�2 � 1 � |V 1| ¨ |EypSyq| � |EbpSbq| ¨ |Sy| � |Sb| � 2 ¨ 2N � 4; this is impossible for N © 4.

So, we have Sy X Sb � ∅. Let y � |Sy|, b � |Sb|. From the construction of our graph,
we have that all the flags in the set V 2 � V 1z�EypSyq Y EbpSbq� have blue squares in the
columns of Sy and yellow squares in the columns of Sb. Hence the only undetermined positions
in these flags are the remaining N �y� b ones, so 2N�y�b © |V 2| © |V 1|� |EypSyq|� |EbpSbq| ©
2N�2 � 1 � py � 1q � pb � 1q, or, denoting c � y � b, 2N�c � c ¡ 2N�2 � 2. This is impossible
since N © c © 2.
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C3. 2500 chess kings have to be placed on a 100� 100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing

a common vertex);
(ii) each row and each column contains exactly 25 kings.
Find the number of such arrangements. (Two arrangements differing by rotation or sym-

metry are supposed to be different.)

(Russia)

Answer. There are two such arrangements.

Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the
board into 2� 2 pieces; we call these pieces blocks. Each block can contain not more than one
king (otherwise these two kings would attack each other); hence, by the pigeonhole principle
each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half,
respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right
half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call
a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks,
BL-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of
kings; so in the rest of the solution we consider the 50 � 50 system of blocks (see Fig. 1). We
identify the blocks by their coordinate pairs; the pair pi, jq, where 1 ¨ i, j ¨ 50, refers to the
jth block in the ith row (or the ith block in the jth column). The upper-left block is p1, 1q.

The system of blocks has the following properties..
(i1) If pi, jq is a B-block then pi� 1, jq is a B-block: otherwise the kings in these two blocks

can take each other. Similarly: if pi, jq is a T-block then pi � 1, jq is a T-block; if pi, jq is an
L-block then pi, j � 1q is an L-block; if pi, jq is an R-block then pi, j � 1q is an R-block.

(ii1) Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains
exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks,
or T-blocks, or B-blocks) is equal to 25 � 50 � 1250.

Consider any B-block of the form p1, jq. By (i1), all blocks in the jth column are B-blocks;
so we call such a column B-column. By (ii1), we have 25 B-blocks in the first row, so we obtain
25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining
columns are T-blocks, and we obtain 25 T-columns. Similarly, there are exactly 25 L-rows and
exactly 25 R-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with
numbers j and j � 1).

kkk kkk kkk BL
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TL1

1
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BR
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3 ki
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j j+1
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Fig. 1 Fig. 2

Case 1. Suppose that the jth column is a T-column, and the pj � 1qth column is a B-
column. Consider some index i such that the ith row is an L-row; then pi, j � 1q is a BL-block.
Therefore, pi� 1, jq cannot be a TR-block (see Fig. 2), hence pi� 1, jq is a TL-block, thus the



29pi� 1qth row is an L-row. Now, choosing the ith row to be the topmost L-row, we successively
obtain that all rows from the ith to the 50th are L-rows. Since we have exactly 25 L-rows, it
follows that the rows from the 1st to the 25th are R-rows, and the rows from the 26th to the
50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and
26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the
1st to the 25th are T-columns, and the columns from the 26th to the 50th are B-columns. So
we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the
condition of the problem (see Fig. 3).

BR

BLTL

TR

BR

BLTL

TR

BR

BLTL

TR

BR

BLTL

TR kkkk k
kk
k kkkk k

kk
k kk kkk

k k
kkk kkk

k k
k

Fig. 3 Fig. 4

Case 2. Suppose that the jth column is a B-column, and the pj�1qth column is a T-column.
Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are
L-rows (and all other rows are R-rows), the columns from the 1st to the 25th are B-columns
(and all other columns are T-columns), so we find exactly one more arrangement of kings (see
Fig. 4).



30

C4. Six stacks S1, . . . , S6 of coins are standing in a row. In the beginning every stack contains
a single coin. There are two types of allowed moves:

Move 1 : If stack Sk with 1 ¨ k ¨ 5 contains at least one coin, you may remove one coin
from Sk and add two coins to Sk�1.

Move 2 : If stack Sk with 1 ¨ k ¨ 4 contains at least one coin, then you may remove
one coin from Sk and exchange stacks Sk�1 and Sk�2.

Decide whether it is possible to achieve by a sequence of such moves that the first five stacks
are empty, whereas the sixth stack S6 contains exactly 201020102010

coins.

C41. Same as Problem C4, but the constant 201020102010

is replaced by 20102010.

(Netherlands)

Answer. Yes (in both variants of the problem). There exists such a sequence of moves.

Solution. Denote by pa1, a2, . . . , anq Ñ pa11, a12, . . . , a1nq the following: if some consecutive stacks
contain a1, . . . , an coins, then it is possible to perform several allowed moves such that the stacks
contain a11, . . . , a1n coins respectively, whereas the contents of the other stacks remain unchanged.

Let A � 20102010 or A � 201020102010

, respectively. Our goal is to show thatp1, 1, 1, 1, 1, 1q Ñ p0, 0, 0, 0, 0, Aq.
First we prove two auxiliary observations.

Lemma 1. pa, 0, 0q Ñ p0, 2a, 0q for every a © 1.

Proof. We prove by induction that pa, 0, 0q Ñ pa � k, 2k, 0q for every 1 ¨ k ¨ a. For k � 1,
apply Move 1 to the first stack:pa, 0, 0q Ñ pa� 1, 2, 0q � pa� 1, 21, 0q.

Now assume that k   a and the statement holds for some k   a. Starting from pa�k, 2k, 0q,
apply Move 1 to the middle stack 2k times, until it becomes empty. Then apply Move 2 to the
first stack:pa� k, 2k, 0q Ñ pa� k, 2k � 1, 2q Ñ � � � Ñ pa� k, 0, 2k�1q Ñ pa� k � 1, 2k�1, 0q.
Hence, pa, 0, 0q Ñ pa� k, 2k, 0q Ñ pa � k � 1, 2k�1, 0q. l
Lemma 2. For every positive integer n, let Pn � 22..

.2loomoon
n

(e.g. P3 � 222 � 16). Thenpa, 0, 0, 0q Ñ p0, Pa, 0, 0q for every a © 1.

Proof. Similarly to Lemma 1, we prove that pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q for every 1 ¨ k ¨ a.
For k � 1, apply Move 1 to the first stack:pa, 0, 0, 0q Ñ pa� 1, 2, 0, 0q � pa� 1, P1, 0, 0q.
Now assume that the lemma holds for some k   a. Starting from pa � k, Pk, 0, 0q, apply

Lemma 1, then apply Move 1 to the first stack:pa� k, Pk, 0, 0q Ñ pa � k, 0, 2Pk, 0q � pa� k, 0, Pk�1, 0q Ñ pa� k � 1, Pk�1, 0, 0q.
Therefore, pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q Ñ pa� k � 1, Pk�1, 0, 0q. l
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Now we prove the statement of the problem.
First apply Move 1 to stack 5, then apply Move 2 to stacks S4, S3, S2 and S1 in this order.

Then apply Lemma 2 twice:p1, 1, 1, 1, 1, 1q Ñ p1, 1, 1, 1, 0, 3q Ñ p1, 1, 1, 0, 3, 0q Ñ p1, 1, 0, 3, 0, 0q Ñ p1, 0, 3, 0, 0, 0q ÑÑ p0, 3, 0, 0, 0, 0q Ñ p0, 0, P3, 0, 0, 0q � p0, 0, 16, 0, 0, 0q Ñ p0, 0, 0, P16, 0, 0q.
We already have more than A coins in stack S4, since

A ¨ 201020102010   p211q20102010 � 211�20102010   220102011   2p211q2011 � 2211�2011   222
15   P16.

To decrease the number of coins in stack S4, apply Move 2 to this stack repeatedly until its
size decreases to A{4. (In every step, we remove a coin from S4 and exchange the empty stacks
S5 and S6.) p0, 0, 0, P16, 0, 0q Ñ p0, 0, 0, P16 � 1, 0, 0q Ñ p0, 0, 0, P16 � 2, 0, 0q ÑÑ � � � Ñ p0, 0, 0, A{4, 0, 0q.

Finally, apply Move 1 repeatedly to empty stacks S4 and S5:p0, 0, 0, A{4, 0, 0q Ñ � � � Ñ p0, 0, 0, 0, A{2, 0q Ñ � � � Ñ p0, 0, 0, 0, 0, Aq.
Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at
most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins
explodes. With 5 stacks it is possible to achieve more than 2214

coins. With 6 stacks the maximum is
greater than PP214

.

It is not hard to show that the numbers 20102010 and 201020102010

in the problem can be replaced
by any nonnegative integer up to PP

214
.

Comment 2. The simpler variant C41 of the problem can be solved without Lemma 2:p1, 1, 1, 1, 1, 1q Ñ p0, 3, 1, 1, 1, 1q Ñ p0, 1, 5, 1, 1, 1q Ñ p0, 1, 1, 9, 1, 1q ÑÑ p0, 1, 1, 1, 17, 1q Ñ p0, 1, 1, 1, 0, 35q Ñ p0, 1, 1, 0, 35, 0q Ñ p0, 1, 0, 35, 0, 0q ÑÑ p0, 0, 35, 0, 0, 0q Ñ p0, 0, 1, 234 , 0, 0q Ñ p0, 0, 1, 0, 2234

, 0q Ñ p0, 0, 0, 2234

, 0, 0qÑ p0, 0, 0, 2234 � 1, 0, 0q Ñ . . . Ñ p0, 0, 0, A{4, 0, 0q Ñ p0, 0, 0, 0, A{2, 0q Ñ p0, 0, 0, 0, 0, Aq.
For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more
invention and technical care. On the other hand, the problem statement in C41 hides the fact that the
resulting amount of coins can be such incredibly huge and leaves this discovery to the students.
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C5. n © 4 players participated in a tennis tournament. Any two players have played exactly
one game, and there was no tie game. We call a company of four players bad if one player
was defeated by the other three players, and each of these three players won a game and lost
another game among themselves. Suppose that there is no bad company in this tournament.
Let wi and ℓi be respectively the number of wins and losses of the ith player. Prove that

ņ

i�1

pwi � ℓiq3 © 0. (1)

(South Korea)

Solution. For any tournament T satisfying the problem condition, denote by SpT q sum under
consideration, namely

SpT q � ņ

i�1

pwi � ℓiq3.
First, we show that the statement holds if a tournament T has only 4 players. Actually, let

A � pa1, a2, a3, a4q be the number of wins of the players; we may assume that a1 © a2 © a3 © a4.
We have a1 � a2 � a3 � a4 � �

4

2

� � 6, hence a4 ¨ 1. If a4 � 0, then we cannot have
a1 � a2 � a3 � 2, otherwise the company of all players is bad. Hence we should have
A � p3, 2, 1, 0q, and SpT q � 33 � 13 � p�1q3 � p�3q3 � 0. On the other hand, if a4 � 1, then
only two possibilities, A � p3, 1, 1, 1q and A � p2, 2, 1, 1q can take place. In the former case we
have SpT q � 33 � 3 � p�2q3 ¡ 0, while in the latter one SpT q � 13 � 13 � p�1q3 � p�1q3 � 0, as
desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and
enumerate the players by the numbers from 1 to n. For every 4 players i1, i2, i3, i4 consider a
“sub-tournament” Ti1i2i3i4 consisting of only these players and the games which they performed
with each other. By the abovementioned, we have SpTi1i2i3i4q © 0. Our aim is to prove that

SpT q � ¸
i1,i2,i3,i4

SpTi1i2i3i4q, (2)

where the sum is taken over all 4-tuples of distinct numbers from the set t1, . . . , nu. This way
the problem statement will be established.

We interpret the number pwi � ℓiq3 as following. For i � j, let εij � 1 if the ith player wins
against the jth one, and εij � �1 otherwise. Thenpwi � ℓiq3 � �

j̧�i

εij

�3 � ¸
j1,j2,j3�i

εij1εij2εij3.

Hence,
SpT q � ¸

iRtj1,j2,j3u εij1εij2εij3.

To simplify this expression, consider all the terms in this sum where two indices are equal.
If, for instance, j1 � j2, then the term contains ε2

ij1
� 1, so we can replace this term by εij3.

Make such replacements for each such term; obviously, after this change each term of the form
εij3 will appear P pT q times, hence

SpT q � ¸|ti,j1,j2,j3u|�4

εij1εij2εij3 � P pT q
i̧�j

εij � S1pT q � P pT qS2pT q.
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We show that S2pT q � 0 and hence SpT q � S1pT q for each tournament. Actually, note that
εij � �εji, and the whole sum can be split into such pairs. Since the sum in each pair is 0, so
is S2pT q.

Thus the desired equality (2) rewrites as

S1pT q � ¸
i1,i2,i3,i4

S1pTi1i2i3i4q. (3)

Now, if all the numbers j1, j2, j3 are distinct, then the set ti, j1, j2, j3u is contained in exactly
one 4-tuple, hence the term εij1εij2εij3 appears in the right-hand part of (3) exactly once, as
well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is
established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and
the k-element subsets will be called as k-companies .

In any company of the players, call a player the local champion of the company if he defeated
all other members of the company. Similarly, if a player lost all his games against the others
in the company then call him the local loser of the company . Obviously every company has
at most one local champion and at most one local loser. By the condition of the problem,
whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local
champion of some k-company. The ith player won against wi other player. To be the local
champion of a k-company, he must be a member of the company, and the other k� 1 members
must be chosen from those whom he defeated. Therefore, the ith player is the local champion

of

�
wi

k � 1



k-companies. Hence, the total number of local champions of all k-companies is

ņ

i�1

�
wi

k � 1



.

Similarly, the total number of local losers of the k-companies is
ņ

i�1

�
ℓi

k � 1



.

Now apply this for k � 2, 3 and 4.

Since every game has a winner and a loser, we have
ņ

i�1

wi � ņ

i�1

ℓi � �n

2



, and hence

ņ

i�1

�
wi � ℓi

� � 0. (4)

In every 3-company, either the players defeated one another in a cycle or the company has
both a local champion and a local loser. Therefore, the total number of local champions and

local losers in the 3-companies is the same,
ņ

i�1

�
wi

2


 � ņ

i�1

�
ℓi

2



. So we have

ņ

i�1

��
wi

2


 � �ℓi

2


� � 0. (5)

In every 4-company, by the problem’s condition, the number of local losers is less than or
equal to the number of local champions. Then the same holds for the total numbers of local
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champions and local losers in all 4-companies, so
ņ

i�1

�
wi

3


 © ņ

i�1

�
ℓi

3



. Hence,

ņ

i�1

��
wi

3


 � �ℓi

3


� © 0. (6)

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It
is easy check thatpx� yq3 � 24

��
x

3


��y

3


�� 24

��
x

2


��y

2


�� �3px� yq2 � 4
�px� yq.

Apply this identity to x � w1 and y � ℓi. Since every player played n � 1 games, we have
wi � ℓi � n� 1, and thuspwi � ℓiq3 � 24

��
wi

3


��ℓi

3


�� 24

��
wi

2


��ℓi

2


�� �3pn� 1q2 � 4
��

wi � ℓi

	
.

Then

ņ

i�1

pwi � ℓiq3 � 24
ņ

i�1

��
wi

3


��ℓi

3


�looooooooomooooooooon©0

�24
ņ

i�1

��
wi

2


��ℓi

2


�looooooooomooooooooon
0

��3pn� 1q2 � 4
� ņ

i�1

�
wi�ℓi

	looooomooooon
0

© 0.
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C6. Given a positive integer k and other two integers b ¡ w ¡ 1. There are two strings of
pearls, a string of b black pearls and a string of w white pearls. The length of a string is the
number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:

(i) The strings are ordered by their lengths in a non-increasing order. If there are some
strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they
consist of more than one pearl) are chosen; if there are less than k strings longer than 1, then
one chooses all of them.

(ii) Next, one cuts each chosen string into two parts differing in length by at most one.

(For instance, if there are strings of 5, 4, 4, 2 black pearls, strings of 8, 4, 3 white pearls and
k � 4, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the partsp4, 4q, p3, 2q, p2, 2q and p2, 2q, respectively.)

The process stops immediately after the step when a first isolated white pearl appears.
Prove that at this stage, there will still exist a string of at least two black pearls.

(Canada)

Solution 1. Denote the situation after the ith step by Ai; hence A0 is the initial situation, and
Ai�1 Ñ Ai is the ith step. We call a string containing m pearls an m-string; it is an m-w-string
or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three
moments of the process: (a) the first stage As when the first 1-string (no matter black or
white) appears; (b) the first stage At where the total number of strings is greater than k (if
such moment does not appear then we put t � 8); and (c) the first stage Af when all black
pearls are isolated. It is sufficient to prove that in Af�1 (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we
have s ¨ f . Moreover, all b-strings from Af�1 become single pearls in the fth step, hence all
of them are 1- or 2-b-strings.

Next, observe that in each step Ai Ñ Ai�1 with i ¨ t � 1, all p¡1q-strings were cut since
there are not more than k strings at all; if, in addition, i   s, then there were no 1-string, so
all the strings were cut in this step.

Now, let Bi and bi be the lengths of the longest and the shortest b-strings in Ai, and
let Wi and wi be the same for w-strings. We show by induction on i ¨ mints, tu that (i) the
situation Ai contains exactly 2i black and 2i white strings, (ii) Bi © Wi, and (iii) bi © wi.
The base case i � 0 is obvious. For the induction step, if i ¨ mints, tu then in the ith step,
each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have
Bi � rBi�1{2s © rWi�1{2s � Wi and bi � tbi�1{2u © twi�1{2u � wi, thus establishing (ii)
and (iii).

For the numbers s, t, f , two cases are possible.

Case 1. Suppose that s ¨ t or f ¨ t � 1 (and hence s ¨ t � 1); in particular, this is true
when t � 8. Then in As�1 we have Bs�1 © Ws�1, bs�1 © ws�1 ¡ 1 as s � 1 ¨ mints, tu.
Now, if s � f , then in As�1, there is no 1-w-string as well as no p¡2q-b-string. That is,
2 � Bs�1 © Ws�1 © bs�1 © ws�1 ¡ 1, hence all these numbers equal 2. This means that
in As�1, all strings contain 2 pearls, and there are 2s�1 black and 2s�1 white strings, which
means b � 2 � 2s�1 � w. This contradicts the problem conditions.

Hence we have s ¨ f � 1 and thus s ¨ t. Therefore, in the sth step each string is cut
into two parts. Now, if a 1-b-string appears in this step, then from ws�1 ¨ bs�1 we see that a
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1-w-string appears as well; so, in each case in the sth step a 1-w-string appears, while not all
black pearls become single, as desired.

Case 2. Now assume that t � 1 ¨ s and t � 2 ¨ f . Then in At we have exactly 2t white
and 2t black strings, all being larger than 1, and 2t�1 ¡ k © 2t (the latter holds since 2t is the
total number of strings in At�1). Now, in the pt� 1qst step, exactly k strings are cut, not more
than 2t of them being black; so the number of w-strings in At�1 is at least 2t � pk � 2tq � k.
Since the number of w-strings does not decrease in our process, in Af�1 we have at least k

white strings as well.
Finally, in Af�1, all b-strings are not larger than 2, and at least one 2-b-string is cut in

the fth step. Therefore, at most k � 1 white strings are cut in this step, hence there exists a
w-string W which is not cut in the fth step. On the other hand, since a 2-b-string is cut, allp©2q-w-strings should also be cut in the fth step; hence W should be a single pearl. This is
exactly what we needed.

Comment. In this solution, we used the condition b � w only to avoid the case b � w � 2t. Hence,
if a number b � w is not a power of 2, then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous
solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that
either

(i) u ¡ v © 1, or
(ii) 2 ¨ u ¨ v   2u, and there also exist k � 1 of p¡v{2q-strings other than considered

above.

First, we notice that this statement implies the problem statement. Actually, in both
cases (i) and (ii) we have u ¡ 1, so at each stage there exists a p©2q-b-string, and for the last
stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A0 the
condition (i) holds since b ¡ w. Further, we suppose that the statement holds for Ai, and prove
it for Ai�1. Two cases are possible.

Case 1. Assume that in Ai, there are a u-b-string and a v-w-string with u ¡ v. We can
assume that v is the length of the shortest w-string in Ai; since we are not at the final stage,
we have v © 2. Now, in the pi� 1qst step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some
v-w-string are cut. Then in Ai�1, we have either a u-b-string and a p¨vq-w-string (and (i) is
valid), or we have a ru{2s-b-string and a tv{2u-w-string. In the latter case, from u ¡ v we getru{2s ¡ tv{2u, and (i) is valid again.

Subcase 1b. Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings
which are cut are longer than v). If u1 � ru{2s ¡ v, then the condition (i) is satisfied since we
have a u1-b-string and a v-w-string in Ai�1. Otherwise, notice that the inequality u ¡ v © 2
implies u1 © 2. Furthermore, besides a fixed u-b-string, other k � 1 of p©v � 1q-strings should
be cut in the pi � 1qst step, hence providing at least k � 1 of p©rpv � 1q{2sq-strings, andrpv � 1q{2s ¡ v{2. So, we can put v1 � v, and we have u1 ¨ v   u ¨ 2u1, so the condition (ii)
holds for Ai�1.

Case 2. Conversely, assume that in Ai there exist a u-b-string, a v-w-string (2 ¨ u ¨ v   2u)
and a set S of k � 1 other strings larger than v{2 (and hence larger than 1). In the pi � 1qst
step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter
one results in a tv{2u-w-string, we have v1 � tv{2u   u, and the condition (i) is valid.
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Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as
u ¨ v). Then all k strings which are cut have the length ¡ v, so each one results in a p¡v{2q-
string. Hence in Ai�1, there exist k © k� 1 of p¡v{2q-strings other than the considered u- and
v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all p©uq-strings
are cut as well, hence our v-w-string is cut. Therefore in Ai�1 there exists a ru{2s-b-string
together with a tv{2u-w-string. Now, if u1 � ru{2s ¡ tv{2u � v1 then the condition (i) is
fulfilled. Otherwise, we have u1 ¨ v1   u ¨ 2u1. In this case, we show that u1 © 2. If, to the
contrary, u1 � 1 (and hence u � 2), then all black and white p©2q-strings should be cut in thepi� 1qst step, and among these strings there are at least a u-b-string, a v-w-string, and k � 1
strings in S (k � 1 strings altogether). This is impossible.

Hence, we get 2 ¨ u1 ¨ v1   2u1. To reach (ii), it remains to check that in Ai�1, there exists
a set S 1 of k� 1 other strings larger than v1{2. These will be exactly the strings obtained from
the elements of S. Namely, each s P S was either cut in the pi�1qst step, or not. In the former
case, let us include into S 1 the largest of the strings obtained from s; otherwise we include s

itself into S 1. All k � 1 strings in S 1 are greater than v{2 © v1, as desired.
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C7. Let P1, . . . , Ps be arithmetic progressions of integers, the following conditions being
satisfied:

(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.
Denote by n the least common multiple of steps of these progressions; let n � pα1

1 . . . pαk

k be
its prime factorization. Prove that

s © 1� ķ

i�1

αippi � 1q.
(Germany)

Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the
solution.

Let n1, . . . , nk be positive integers. By an n1 � n2 � � � � � nk grid we mean the set N �tpa1, . . . , akq : ai P Z, 0 ¨ ai ¨ ni � 1u; the elements of N will be referred to as points. In this
grid, we define a subgrid as a subset of the form

L � tpb1, . . . , bkq P N : bi1 � xi1 , . . . , bit � xitu, (1)

where I � ti1, . . . , itu is an arbitrary nonempty set of indices, and xij P r0, nij � 1s (1 ¨ j ¨ t)
are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the ith coordinate
axis if i P I, and that it is parallel to the ith coordinate axis otherwise.

Lemma. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls (this means N � �s

i�1 Li)
so that

(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Then

s © 1� ķ

i�1

pni � 1q.
Proof. Assume to the contrary that s ¨ °ipni � 1q � s1. Our aim is to find a point that is not
covered by L1, . . . , Ls.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal
subgrid so that for the ith axis, there will be at most ni � 1 maximal subgrids orthogonal to
this axis. Then the desired point can be found easily: its ith coordinate should be that not
covered by the maximal subgrids orthogonal to the ith axis. Surely, the conditions for existence
of such expansion are provided by Hall’s lemma on matchings. So, we will follow this direction,
although we will apply Hall’s lemma to some subgraph instead of the whole graph.

Construct a bipartite graph G � pV Y V 1, Eq as follows. Let V � tL1, . . . , Lsu, and let
V 1 � tvij : 1 ¨ i ¨ s, 1 ¨ j ¨ ni� 1u be some set of s1 elements. Further, let the edge pLm, vijq
appear iff Lm is orthogonal to the ith axis.

For each subset W � V , denote

fpW q � tv P V 1 : pL, vq P E for some L P W u.
Notice that fpV q � V 1 by (iii).

Now, consider the set W � V containing the maximal number of elements such that |W | ¡|fpW q|; if there is no such set then we set W � ∅. Denote W 1 � fpW q, U � V zW , U 1 � V 1zW 1.
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By our assumption and the Lemma condition, |fpV q| � |V 1| © |V |, hence W � V and U � ∅.
Permuting the coordinates, we can assume that U 1 � tvij : 1 ¨ i ¨ ℓu, W 1 � tvij : ℓ�1 ¨ i ¨ ku.

Consider the induced subgraph G1 of G on the vertices U Y U 1. We claim that for every
X � U , we get |fpXqXU 1| © |X| (so G1 satisfies the conditions of Hall’s lemma). Actually, we
have |W | © |fpW q|, so if |X| ¡ |fpXq X U 1| for some X � U , then we have|W YX| � |W | � |X| ¡ |fpW q| � |fpXq X U 1| � |fpW q Y pfpXq X U 1q| � |fpW YXq|.
This contradicts the maximality of |W |.

Thus, applying Hall’s lemma, we can assign to each L P U some vertex vij P U 1 so that to
distinct elements of U , distinct vertices of U 1 are assigned. In this situation, we say that L P U

corresponds to the ith axis, and write gpLq � i. Since there are ni � 1 vertices of the form vij ,
we get that for each 1 ¨ i ¨ ℓ, not more than ni � 1 subgrids correspond to the ith axis.

Finally, we are ready to present the desired point. Since W � V , there exists a point
b � pb1, b2, . . . , bkq P NzpYLPW Lq. On the other hand, for every 1 ¨ i ¨ ℓ, consider any subgrid
L P U with gpLq � i. This means exactly that L is orthogonal to the ith axis, and hence all
its elements have the same ith coordinate cL. Since there are at most ni � 1 such subgrids,
there exists a number 0 ¨ ai ¨ ni � 1 which is not contained in a set tcL : gpLq � iu. Choose
such number for every 1 ¨ i ¨ ℓ. Now we claim that point a � pa1, . . . , aℓ, bℓ�1, . . . , bkq is not
covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some L P U , since all the points in L have gpLqth coordinate
cL � agpLq. On the other hand, suppose that a P L for some L P W ; recall that b R L. But the
points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of
the first ℓ axes, and hence our graph contains some edge pL, vijq for i ¨ ℓ. It contradicts the
definition of W 1. The Lemma is proved. l

Now we turn to the problem. Let dj be the step of the progression Pj . Note that since
n � l.c.m.pd1, . . . , dsq, for each 1 ¨ i ¨ k there exists an index jpiq such that pαi

i

�� djpiq. We
assume that n ¡ 1; otherwise the problem statement is trivial.

For each 0 ¨ m ¨ n � 1 and 1 ¨ i ¨ k, let mi be the residue of m modulo pαi

i , and let
mi � riαi

. . . ri1 be the base pi representation of mi (possibly, with some leading zeroes). Now,
we put into correspondence to m the sequence rpmq � pr11, . . . , r1α1

, r21, . . . , rkαk
q. Hence rpmq

lies in a p1 � � � � � p1loooooomoooooon
α1 times

� � � � � pk � � � � � pkloooooomoooooon
αk times

grid N .

Surely, if rpmq � rpm1q then pαi

i

�� mi � m1
i, which follows pαi

i

�� m � m1 for all 1 ¨ i ¨ k;
consequently, n

�� m�m1. So, when m runs over the set t0, . . . , n� 1u, the sequences rpmq do
not repeat; since |N | � n, this means that r is a bijection between t0, . . . , n� 1u and N . Now
we will show that for each 1 ¨ i ¨ s, the set Li � trpmq : m P Piu is a subgrid, and that for
each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N , and
the condition (ii1) follows directly from (ii). Hence the Lemma provides exactly the estimate
we need.

Consider some 1 ¨ j ¨ s and let dj � p
γ1

1 . . . p
γk

k . Consider some q P Pj and let rpqq �pr11, . . . , rkαk
q. Then for an arbitrary q1, setting rpq1q � pr111, . . . , r1kαk

q we have

q1 P Pj ðñ p
γi

i

�� q � q1 for each 1 ¨ i ¨ k ðñ ri,t � r1i,t for all t ¨ γi.

Hence Lj � tpr111, . . . , r1kαk
q P N : ri,t � r1i,t for all t ¨ γiu which means that Lj is a subgrid

containing rpqq. Moreover, in Ljpiq, all the coordinates corresponding to pi are fixed, so it is
orthogonal to all of their axes, as desired.
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Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the
following one. For each 1 ¨ i ¨ k, 0 ¨ j ¨ αi � 1, 1 ¨ k ¨ p� 1, let

Pi,j,k � kp
j
i � p

j�1
i Z,

and add the progression P0 � nZ. One can easily check that this set satisfies all the problem conditions.
There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every 1 ¨ i ¨ k, let
0 � αi0, αi1, . . . , αihi

be all the numbers of the form ordpi
pdjq in an increasing order (we delete the

repeating occurences of a number, and add a number 0 � αi0 if it does not occur). Then, repeating
the arguments from the solution one can obtain that

s © 1� ķ

i�1

hi̧

j�1

ppαj�αj�1 � 1q.
Note that pα � 1 © αpp � 1q, and the equality is achieved only for α � 1. Hence, for reaching the
minimal number of the progressions, one should have αi,j � j for all i, j. In other words, for each
1 ¨ j ¨ αi, there should be an index t such that ordpi

pdtq � j.

Solution 2. We start with introducing some notation. For positive integer r, we denoterrs � t1, 2, . . . , ru. Next, we say that a set of progressions P � tP1, . . . , Psu cover Z if each
integer belongs to some of them; we say that this covering is minimal if no proper subset of P
covers Z. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering tP1, . . . , Psu and for every 1 ¨ i ¨ s, let di be the step of
progression Pi, and hi be some number which is contained in Pi but in none of the other
progressions. We assume that n ¡ 1, otherwise the problem is trivial. This implies di ¡ 1,
otherwise the progression Pi covers all the numbers, and n � 1.

We will prove a more general statement, namely the following

Claim. Assume that the progressions P1, . . . , Ps and number n � pα1

1 . . . pαk

k ¡ 1 are chosen as
in the problem statement. Moreover, choose some nonempty set of indices I � ti1, . . . , itu � rks
and some positive integer βi ¨ αi for every i P I. Consider the set of indices

T � !j : 1 ¨ j ¨ s, and p
αi�βi�1
i

�� dj for some i P I
)

.

Then |T | © 1�
i̧PI βippi � 1q. (2)

Observe that the Claim for I � rks and βi � αi implies the problem statement, since the
left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all dj’s are prime numbers. If for some 1 ¨ i ¨ k

we have at least pi progressions with the step pi, then they do not intersect and hence cover all
the integers; it means that there are no other progressions, and n � pi; the Claim is trivial in
this case.

Now assume that for every 1 ¨ i ¨ k, there are not more than pi � 1 progressions with
step pi; each such progression covers the numbers with a fixed residue modulo pi, therefore
there exists a residue qi mod pi which is not touched by these progressions. By the Chinese
Remainder Theorem, there exists a number q such that q � qi pmod piq for all 1 ¨ i ¨ k; this
number cannot be covered by any progression with step pi, hence it is not covered at all. A
contradiction.



41

2. Now, we assume that the general Claim is not valid, and hence we consider a counterex-
ample tP1, . . . , Psu for the Claim; we can choose it to be minimal in the following sense: the number n is minimal possible among all the counterexamples; the sum

°
i di is minimal possible among all the counterexamples having the chosen value

of n.

As was mentioned above, not all numbers di are primes; hence we can assume that d1 is
composite, say p1

�� d1 and d11 � d1

p1
¡ 1. Consider a progression P 1

1 having the step d11, and
containing P1. We will focus on two coverings constructed as follows.

(i) Surely, the progressions P 1
1, P2, . . . , Ps cover Z, though this covering in not necessarily

minimal. So, choose some minimal subcovering P 1 in it; surely P 1
1 P P 1 since h1 is not covered

by P2, . . . , Ps, so we may assume that P 1 � tP 1
1, P2, . . . , Ps1u for some s1 ¨ s. Furthermore, the

period of the covering P 1 can appear to be less than n; so we denote this period by

n1 � pα1�σ1

1 . . . pαk�σk

k � l.c.m.
�
d11, d2, . . . , ds1�.

Observe that for each Pj R P 1, we have hj P P 1
1, otherwise hj would not be covered by P.

(ii) On the other hand, each nonempty set of the form Ri � Pi X P 1
1 (1 ¨ i ¨ s) is also a

progression with a step ri � l.c.m.pdi, d
1
1q, and such sets cover P 1

1. Scaling these progressions
with the ratio 1{d11, we obtain the progressions Qi with steps qi � ri{d11 which cover Z. Now we
choose a minimal subcovering Q of this covering; again we should have Q1 P Q by the reasons
of h1. Now, denote the period of Q by

n2 � l.c.m.tqi : Qi P Qu � l.c.m.tri : Qi P Qu
d11 � p

γ1

1 . . . p
γk

k

d11 .

Note that if hj P P 1
1, then the image of hj under the scaling can be covered by Qj only; so, in

this case we have Qj P Q.

Our aim is to find the desired number of progressions in coverings P and Q. First, we have
n © n1, and the sum of the steps in P 1 is less than that in P; hence the Claim is valid for P 1.
We apply it to the set of indices I 1 � ti P I : βi ¡ σiu and the exponents β 1

i � βi � σi; hence
the set under consideration is

T 1 � !j : 1 ¨ j ¨ s1, and p
pαi�σiq�β1

i�1

i � p
αi�βi�1
i

�� dj for some i P I 1) � T X rs1s,
and we obtain that|T X rs1s| © |T 1| © 1�

i̧PI 1pβi � σiqppi � 1q � 1�
i̧PI pβi � σiq�ppi � 1q,

where pxq� � maxtx, 0u; the latter equality holds as for i R I 1 we have βi ¨ σi.
Observe that x � px� yq� �mintx, yu for all x, y. So, if we find at least

G �
i̧PI mintβi, σiuppi � 1q

indices in T X ts1 � 1, . . . , su, then we would have|T | � |TXrs1s|�|TXts1�1, . . . , su| © 1�
i̧PI�pβi�σiq��mintβi, σiu�ppi�1q � 1�

i̧PI βippi�1q,
thus leading to a contradiction with the choice of P. We will find those indices among the
indices of progressions in Q.
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3. Now denote I2 � ti P I : σi ¡ 0u and consider some i P I2; then pαi

i � �� n1. On the
other hand, there exists an index jpiq such that pαi

i

�� djpiq; this means that djpiq � �� n1 and hence
Pjpiq cannot appear in P 1, so jpiq ¡ s1. Moreover, we have observed before that in this case
hjpiq P P 1

1, hence Qjpiq P Q. This means that qjpiq �� n2, therefore γi � αi for each i P I2 (recall
here that qi � ri{d11 and hence djpiq �� rjpiq �� d11n2).

Let d11 � pτ1
1 . . . pτk

k . Then n2 � p
γ1�τ1
1 . . . p

γi�τi

k . Now, if i P I2, then for every β the condition

p
pγi�τiq�β�1

i

�� qj is equivalent to p
αi�β�1
i

�� rj.
Note that n2 ¨ n{d11   n, hence we can apply the Claim to the covering Q. We perform

this with the set of indices I2 and the exponents β2
i � mintβi, σiu ¡ 0. So, the set under

consideration is

T 2 � !j : Qj P Q, and p
pγi�τiq�mintβi,σiu�1

i

�� qj for some i P I2)� !j : Qj P Q, and p
αi�mintβi,σiu�1

i

�� rj for some i P I2) ,

and we obtain |T 2| © 1 �G. Finally, we claim that T 2 � T X �t1u Y ts1 � 1, . . . , su�; then we
will obtain |T X ts1 � 1, . . . , su| © G, which is exactly what we need.

To prove this, consider any j P T 2. Observe first that αi �mintβi, σiu � 1 ¡ αi � σi © τi,

hence from p
αi�mintβi,σiu�1

i

�� rj � l.c.m.pd11, djq we have p
αi�mintβi,σiu�1

i

�� dj, which means that
j P T . Next, the exponent of pi in dj is greater than that in n1, which means that Pj R P 1. This
may appear only if j � 1 or j ¡ s1, as desired. This completes the proof.

Comment 2. A grid analogue of the Claim is also valid. It reads as following.

Claim. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls so that
(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Choose some set of indices I � ti1, . . . , itu � rks, and consider the set of indices

T � tj : 1 ¨ j ¨ s, and Lj is orthogonal to the ith axis for some i P Iu .

Then |T | © 1�
i̧PIpni � 1q.

This Claim may be proved almost in the same way as in Solution 1.
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Geometry

G1. Let ABC be an acute triangle with D, E, F the feet of the altitudes lying on BC, CA, AB

respectively. One of the intersection points of the line EF and the circumcircle is P . The
lines BP and DF meet at point Q. Prove that AP � AQ.

(United Kingdom)

Solution 1. The line EF intersects the circumcircle at two points. Depending on the choice
of P , there are two different cases to consider.

Case 1 : The point P lies on the ray EF (see Fig. 1).
Let =CAB � α, =ABC � β and =BCA � γ. The quadrilaterals BCEF and CAFD are

cyclic due to the right angles at D, E and F . So,=BDF � 180� �=FDC � =CAF � α,=AFE � 180� �=EFB � =BCE � γ,=DFB � 180� �=AFD � =DCA � γ.

Since P lies on the arc AB of the circumcircle, =PBA   =BCA � γ. Hence, we have=PBD �=BDF � =PBA �=ABD �=BDF   γ � β � α � 180�,
and the point Q must lie on the extensions of BP and DF beyond the points P and F ,
respectively.

From the cyclic quadrilateral APBC we get=QPA � 180� �=APB � =BCA � γ � =DFB � =QFA.

Hence, the quadrilateral AQPF is cyclic. Then =AQP � 180� �=PFA � =AFE � γ.
We obtained that =AQP � =QPA � γ, so the triangle AQP is isosceles, AP � AQ.
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Case 2 : The point P lies on the ray FE (see Fig. 2). In this case the point Q lies inside
the segment FD.

Similarly to the first case, we have=QPA � =BCA � γ � =DFB � 180� �=AFQ.

Hence, the quadrilateral AFQP is cyclic.
Then =AQP � =AFP � =AFE � γ � =QPA. The triangle AQP is isosceles again,=AQP � =QPA and thus AP � AQ.

Comment. Using signed angles, the two possible configurations can be handled simultaneously, with-
out investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by �XY the central angle
of the arc XY .

Let P and P 1 be the two points where the line EF meets the circumcircle; let P lie on
the arc AB and let P 1 lie on the arc CA. Let BP and BP 1 meet the line DF and Q and Q1,
respectively (see Fig. 3). We will prove that AP � AP 1 � AQ � AQ1.

B

A

Q

CD

E

γ

γ
γ

γ
P ′

P
F

Q′

Fig. 3

Like in the first solution, we have =AFE � =BFP � =DFB � =BCA � γ from the
cyclic quadrilaterals BCEF and CAFD.

By �PB � �P 1A � 2=AFP 1 � 2γ � 2=BCA ��AP ��PB, we have�AP � �P 1A, =PBA � =ABP 1 and AP � AP 1. p1q
Due to �AP � �P 1A, the lines BP and BQ1 are symmetrical about line AB.
Similarly, by =BFP � =Q1FB, the lines FP and FQ1 are symmetrical about AB. It

follows that also the points P and P 1 are symmetrical to Q1 and Q, respectively. Therefore,

AP � AQ1 and AP 1 � AQ. p2q
The relations (1) and (2) together prove AP � AP 1 � AQ � AQ1.
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G2. Point P lies inside triangle ABC. Lines AP , BP , CP meet the circumcircle of ABC

again at points K, L, M , respectively. The tangent to the circumcircle at C meets line AB

at S. Prove that SC � SP if and only if MK � ML.

(Poland)

Solution 1. We assume that CA ¡ CB, so point S lies on the ray AB.

From the similar triangles △PKM � △PCA and △PLM � △PCB we get
PM

KM
� PA

CA

and
LM

PM
� CB

PB
. Multiplying these two equalities, we get

LM

KM
� CB

CA
� PA

PB
.

Hence, the relation MK � ML is equivalent to
CB

CA
� PB

PA
.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of

points X for which
XA

XB
� CA

CB
is the Apollonius circle Ω with the center Q on the line AB,

and this circle passes through C and E. Hence, we have MK � ML if and only if P lies on Ω,
that is QP � QC.
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E

Ω

Fig. 1

Now we prove that S � Q, thus establishing the problem statement. We have =CES �=CAE �=ACE � =BCS �=ECB � =ECS, so SC � SE. Hence, the point S lies on AB

as well as on the perpendicular bisector of CE and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the
angle ASC, the points K, L, M defined as in the problem. We claim that SP � SC implies
MK � ML.

Let E and F be the points of intersection of the line SP with ω, point E lying on the
segment SP (see Fig. 2).
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We have SP 2 � SC2 � SA � SB, so
SP

SB
� SA

SP
, and hence △PSA � △BSP . Then=BPS � =SAP . Since 2=BPS ��BE � �LF and 2=SAP ��BE ��EK we have�LF � �EK. (1)

On the other hand, from =SPC � =SCP we have �EC � �MF ��EC � �EM , or�MF � �EM. (2)

From (1) and (2) we get ǑMFL � �MF � �FL � �ME ��EK � ǑMEK and hence MK � ML.
The claim is proved.

2. We are left to prove the converse. So, assume that MK � ML, and introduce the
points E and F as above. We have SC2 � SE � SF ; hence, there exists a point P 1 lying on the
segment EF such that SP 1 � SC (see Fig. 3).
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Assume that P � P 1. Let the lines AP 1, BP 1, CP 1 meet ω again at points K 1, L1, M 1
respectively. Now, if P 1 lies on the segment PF then by the first part of the solution we haveǑM 1FL1 � ǑM 1EK 1. On the other hand, we have ǑMFL ¡ ǑM 1FL1 � ǑM 1EK 1 ¡ ǑMEK, thereforeǑMFL ¡ ǑMEK which contradicts MK � ML.

Similarly, if point P 1 lies on the segment EP then we get ǑMFL   ǑMEK which is impossible.
Therefore, the points P and P 1 coincide and hence SP � SP 1 � SC.

Solution 3. We present a different proof of the converse direction, that is, MK � ML ñ
SP � SC. As in the previous solutions we assume that CA ¡ CB, and the line SP meets ω

at E and F .

From ML � MK we get ǑMEK �ǑMFL. Now we claim that �ME � �MF and �EK � �FL.
To the contrary, suppose first that �ME ¡ �MF ; then �EK � ǑMEK��ME  ǑMFL��MF ��FL. Now, the inequality �ME ¡ �MF implies 2=SCM ��EC � �ME ¡�EC � �MF � 2=SPC

and hence SP ¡ SC. On the other hand, the inequality �EK   �FL implies 2=SPK ��EK ��AF   �FL��AF � 2=ABL, hence=SPA � 180� �=SPK ¡ 180� �=ABL � =SBP.
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Consider the point A1 on the ray SA for which =SPA1 � =SBP ; in our case, this point lies
on the segment SA (see Fig. 4). Then △SBP � △SPA1 and SP 2 � SB �SA1   SB �SA � SC2.
Therefore, SP   SC which contradicts SP ¡ SC.

Similarly, one can prove that the inequality �ME   �MF is also impossible. So, we get�ME � �MF and therefore 2=SCM � �EC � �ME � �EC � �MF � 2=SPC, which implies
SC � SP .
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G3. Let A1A2 . . . An be a convex polygon. Point P inside this polygon is chosen so that its
projections P1, . . . , Pn onto lines A1A2, . . . , AnA1 respectively lie on the sides of the polygon.
Prove that for arbitrary points X1, . . . , Xn on sides A1A2, . . . , AnA1 respectively,

max

"
X1X2

P1P2

, . . . ,
XnX1

PnP1

* © 1.

(Armenia)

Solution 1. Denote Pn�1 � P1, Xn�1 � X1, An�1 � A1.

Lemma. Let point Q lies inside A1A2 . . . An. Then it is contained in at least one of the circum-
circles of triangles X1A2X2, . . . , XnA1X1.

Proof. If Q lies in one of the triangles X1A2X2, . . . , XnA1X1, the claim is obvious. Otherwise
Q lies inside the polygon X1X2 . . .Xn (see Fig. 1). Then we havep=X1A2X2 �=X1QX2q � � � � � p=XnA1X1 �=XnQX1q� p=X1A1X2 � � � � �=XnA1X1q � p=X1QX2 � � � � �=XnQX1q � pn � 2qπ � 2π � nπ,

hence there exists an index i such that =XiAi�1Xi�1 � =XiQXi�1 © πn
n
� π. Since the

quadrilateral QXiAi�1Xi�1 is convex, this means exactly that Q is contained the circumcircle
of △XiAi�1Xi�1, as desired. l

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of
triangle XiAi�1Xi�1 for some i. Consider the circumcircles ω and Ω of triangles PiAi�1Pi�1 and
XiAi�1Xi�1 respectively (see Fig. 2); let r and R be their radii. Then we get 2r � Ai�1P ¨ 2R
(since P lies inside Ω), hence

PiPi�1 � 2r sin=PiAi�1Pi�1 ¨ 2R sin=XiAi�1Xi�1 � XiXi�1,

QED.
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51

Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

max

"
X1X2

P1P2

cos α1, . . . ,
XnX1

PnP1

cos αn

* © 1,

where αi (1 ¨ i ¨ n) is the angle between lines XiXi�1 and PiPi�1. We denote βi � =AiPiPi�1

and γi � =Ai�1PiPi�1 for all 1 ¨ i ¨ n.
Suppose that for some 1 ¨ i ¨ n, point Xi lies on the segment AiPi, while point Xi�1 lies on

the segment Pi�1Ai�2. Then the projection of the segment XiXi�1 onto the line PiPi�1 contains
segment PiPi�1, since γi and βi�1 are acute angles (see Fig. 3). Therefore, XiXi�1 cos αi ©
PiPi�1, and in this case the statement is proved.

So, the only case left is when point Xi lies on segment PiAi�1 for all 1 ¨ i ¨ n (the case
when each Xi lies on segment AiPi is completely analogous).

Now, assume to the contrary that the inequality

XiXi�1 cos αi   PiPi�1 (1)

holds for every 1 ¨ i ¨ n. Let Yi and Y 1
i�1 be the projections of Xi and Xi�1 onto PiPi�1. Then

inequality (1) means exactly that YiY
1
i�1   PiPi�1, or PiYi ¡ Pi�1Y

1
i�1 (again since γi and βi�1

are acute; see Fig. 4). Hence, we have

XiPi cos γi ¡ Xi�1Pi�1 cos βi�1, 1 ¨ i ¨ n.

Multiplying these inequalities, we get

cos γ1 cos γ2 � � � cos γn ¡ cos β1 cos β2 � � � cos βn. (2)

On the other hand, the sines theorem applied to triangle PPiPi�1 provides

PPi

PPi�1

� sin
�

π
2
� βi�1

�
sin
�

π
2
� γi

� � cos βi�1

cos γi

.

Multiplying these equalities we get

1 � cos β2

cos γ1

� cos β3

cos γ2

� � � cos β1

cos γn

which contradicts (2).
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G4. Let I be the incenter of a triangle ABC and Γ be its circumcircle. Let the line AI

intersect Γ at a point D � A. Let F and E be points on side BC and arc BDC respectively
such that =BAF � =CAE   1

2
=BAC. Finally, let G be the midpoint of the segment IF .

Prove that the lines DG and EI intersect on Γ.

(Hong Kong)

Solution 1. Let X be the second point of intersection of line EI with Γ, and L be the foot
of the bisector of angle BAC. Let G1 and T be the points of intersection of segment DX with
lines IF and AF , respectively. We are to prove that G � G1, or IG1 � G1F . By the Menelaus
theorem applied to triangle AIF and line DX, it means that we need the relation

1 � G1F
IG1 � TF

AT
� AD

ID
, or

TF

AT
� ID

AD
.

Let the line AF intersect Γ at point K � A (see Fig. 1); since =BAK � =CAE we have�BK ��CE, hence KE ‖ BC. Notice that =IAT � =DAK � =EAD � =EXD � =IXT , so
the points I, A, X, T are concyclic. Hence we have =ITA � =IXA � =EXA � =EKA, so

IT ‖ KE ‖ BC. Therefore we obtain
TF

AT
� IL

AI
.

Since CI is the bisector of =ACL, we get
IL

AI
� CL

AC
. Furthermore, =DCL � =DCB �=DAB � =CAD � 1

2
=BAC, hence the triangles DCL and DAC are similar; therefore we get

CL

AC
� DC

AD
. Finally, it is known that the midpoint D of arc BC is equidistant from points I,

B, C, hence
DC

AD
� ID

AD
.

Summarizing all these equalities, we get

TF

AT
� IL

AI
� CL

AC
� DC

AD
� ID

AD
,

as desired.
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Comment. The equality
AI

IL
� AD

DI
is known and can be obtained in many different ways. For

instance, one can consider the inversion with center D and radius DC � DI. This inversion takesǑBAC to the segment BC, so point A goes to L. Hence
IL

DI
� AI

AD
, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that
it suffice to prove the equality

TF

AT
� DI

AD
ðñ TF � AT

AT
� DI � AD

AD
ðñ AT

AD
� AF

DI � AD
.

Since =FAD � =EAI and =TDA � =XDA � =XEA � =IEA, we get that the trian-

gles ATD and AIE are similar, therefore
AT

AD
� AI

AE
.

Next, we also use the relation DB � DC � DI. Let J be the point on the extension
of segment AD over point D such that DJ � DI � DC (see Fig. 2). Then =DJC �=JCD � 1

2
pπ �=JDCq � 1

2
=ADC � 1

2
=ABC � =ABI. Moreover, =BAI � =JAC, hence

triangles ABI and AJC are similar, so
AB

AJ
� AI

AC
, or AB �AC � AJ �AI � pDI �ADq � AI.

On the other hand, we get =ABF � =ABC � =AEC and =BAF � =CAE, so trian-

gles ABF and AEC are also similar, which implies
AF

AC
� AB

AE
, or AB � AC � AF � AE.

Summarizing we getpDI � ADq � AI � AB � AC � AF � AE ñ AI

AE
� AF

AD �DI
ñ AT

AD
� AF

AD �DI
,

as desired.

Comment. In fact, point J is an excenter of triangle ABC.
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G5. Let ABCDE be a convex pentagon such that BC ‖ AE, AB � BC�AE, and =ABC �=CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given
that =DMO � 90�, prove that 2=BDA � =CDE.

(Ukraine)

Solution 1. Choose point T on ray AE such that AT � AB; then from AE ‖ BC we have=CBT � =ATB � =ABT , so BT is the bisector of =ABC. On the other hand, we have
ET � AT � AE � AB � AE � BC, hence quadrilateral BCTE is a parallelogram, and the
midpoint M of its diagonal CE is also the midpoint of the other diagonal BT .

Next, let point K be symmetrical to D with respect to M . Then OM is the perpendicular
bisector of segment DK, and hence OD � OK, which means that point K lies on the cir-
cumcircle of triangle BCD. Hence we have =BDC � =BKC. On the other hand, the angles
BKC and TDE are symmetrical with respect to M , so =TDE � =BKC � =BDC.

Therefore, =BDT � =BDE �=EDT � =BDE �=BDC � =CDE � =ABC � 180� �=BAT . This means that the points A, B, D, T are concyclic, and hence =ADB � =ATB �
1

2
=ABC � 1

2
=CDE, as desired.
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α

β
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+
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Solution 2. Let=CBD � α, =BDC � β, =ADE � γ, and =ABC � =CDE � 2ϕ. Then
we have =ADB � 2ϕ� β � γ, =BCD � 180� � α � β, =AED � 360� �=BCD �=CDE �
180� � 2ϕ� α � β, and finally =DAE � 180� �=ADE �=AED � 2ϕ� α � β � γ.
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OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Let N be the midpoint of CD; then =DNO � 90� � =DMO, hence points M , N lie on
the circle with diameter OD. Now, if points O and M lie on the same side of CD, we have=DMN � =DON � 1

2
=DOC � α; in the other case, we have =DMN � 180��=DON � α;
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so, in both cases =DMN � α (see Figures). Next, since MN is a midline in triangle CDE,
we have =MDE � =DMN � α and =NDM � 2ϕ� α.

Now we apply the sine rule to the triangles ABD, ADE (twice), BCD and MND obtaining

AB

AD
� sinp2ϕ� β � γq

sinp2ϕ� αq ,
AE

AD
� sin γ

sinp2ϕ� α � βq , DE

AD
� sinp2ϕ� α � β � γq

sinp2ϕ� α � βq ,

BC

CD
� sin β

sin α
,

CD

DE
� CD{2

DE{2 � ND

NM
� sin α

sinp2ϕ� αq ,
which implies

BC

AD
� BC

CD
� CD

DE
� DE

AD
� sin β � sinp2ϕ� α � β � γq

sinp2ϕ� αq � sinp2ϕ� α � βq .
Hence, the condition AB � AE �BC, or equivalently

AB

AD
� AE �BC

AD
, after multiplying

by the common denominator rewrites as

sinp2ϕ� α � βq � sinp2ϕ� β � γq � sin γ � sinp2ϕ� αq � sin β � sinp2ϕ� α � β � γqðñ cospγ � αq � cosp4ϕ� 2β � α � γq � cosp2ϕ� α � 2β � γq � cosp2ϕ� γ � αqðñ cospγ � αq � cosp2ϕ� γ � αq � cosp2ϕ� α � 2β � γq � cosp4ϕ� 2β � α � γqðñ cos ϕ � cospϕ� γ � αq � cos ϕ � cosp3ϕ� 2β � α � γqðñ cos ϕ � �cospϕ� γ � αq � cosp3ϕ� 2β � α � γq� � 0ðñ cos ϕ � sinp2ϕ� β � αq � sinpϕ� β � γq � 0.

Since 2ϕ�β�α � 180��=AED   180� and ϕ � 1

2
=ABC   90�, it follows that ϕ � β�γ,

hence =BDA � 2ϕ� β � γ � ϕ � 1
2
=CDE, as desired.
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G6. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides BC,
CA, AB of an acute-angled triangle ABC. Prove that the incenter of triangle ABC lies inside
triangle XY Z.

G61. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides
BC, CA, AB of a triangle ABC. Prove that if the incenter of triangle ABC lies outside
triangle XY Z, then one of the angles of triangle ABC is greater than 120�.

(Bulgaria)

Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of
triangle ABC lies inside the incircle of triangle XY Z (and hence surely inside triangle XY Z

itself). We denote by dpU, V W q the distance between point U and line V W .
Denote by O the incenter of △XY Z and by r, r1 and R1 the inradii of triangles ABC, XY Z

and the circumradius of XY Z, respectively. Then we have R1 � 2r1, and the desired inequality
is OI ¨ r1. We assume that O � I; otherwise the claim is trivial.

Let the incircle of △ABC touch its sides BC, AC, AB at points A1, B1, C1 respectively.
The lines IA1, IB1, IC1 cut the plane into 6 acute angles, each one containing one of the
points A1, B1, C1 on its border. We may assume that O lies in an angle defined by lines IA1,
IC1 and containing point C1 (see Fig. 1). Let A1 and C 1 be the projections of O onto lines IA1

and IC1, respectively.
Since OX � R1, we have dpO, BCq ¨ R1. Since OA1 ‖ BC, it follows that dpA1, BCq �

A1I � r ¨ R1, or A1I ¨ R1 � r. On the other hand, the incircle of △XY Z lies inside △ABC,
hence dpO, ABq © r1, and analogously we get dpO, ABq � C 1C1 � r� IC 1 © r1, or IC 1 ¨ r� r1.
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Finally, the quadrilateral IA1OC 1 is circumscribed due to the right angles at A1 and C 1
(see Fig. 2). On its circumcircle, we have ǑA1OC 1 � 2=A1IC 1   180� � �OC 1I, hence 180� ©�IC 1 ¡ �A1O. This means that IC 1 ¡ A1O. Finally, we have OI ¨ IA1 � A1O   IA1 � IC 1 ¨pR1 � rq � pr � r1q � R1 � r1 � r1, as desired.

Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of trian-
gles AY Z, BXZ, CXY — assume that it lies in △AY Z. Let the incircle ω of △ABC touch
sides BC, AC at point A1, B1 respectively. Without loss of generality, assume that point A1

lies on segment CX. In this case we will show that =C ¡ 90� thus leading to a contradiction.
Note that ω intersects each of the segments XY and Y Z at two points; let U , U 1 and V ,

V 1 be the points of intersection of ω with XY and Y Z, respectively (UY ¡ U 1Y , V Y ¡ V 1Y ;
see Figs. 3 and 4). Note that 60� � =XY Z � 1

2
p�UV ��U 1V 1q ¨ 1

2
�UV , hence �UV © 120�.



57

On the other hand, since I lies in △AY Z, we get ǑV UV 1   180�, hence ǑUA1U 1 ¨ ǑUA1V 1  
180� ��UV ¨ 60�.

Now, two cases are possible due to the order of points Y , B1 on segment AC.
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Case 1. Let point Y lie on the segment AB1 (see Fig. 3). Then we have =Y XC �
1

2

��A1U 1 ��A1U
� ¨ 1

2
ǑUA1U 1   30�; analogously, we get =XY C ¨ 1

2
ǑUA1U 1   30�. Therefore,=Y CX � 180� �=Y XC �=XY C ¡ 120�, as desired.

Case 2. Now let point Y lie on the segment CB1 (see Fig. 4). Analogously, we obtain=Y XC   30�. Next, =IY X ¡ =ZY X � 60�, but =IY X   =IY B1, since Y B1 is a tangent
and Y X is a secant line to circle ω from point Y . Hence, we get 120�   =IY B1 � =IY X �=B1Y X � =Y XC �=Y CX   30� �=Y CX, hence =Y CX ¡ 120� � 30� � 90�, as desired.

Comment. In the same way, one can prove a more general

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, and α is the
least angle of △XY Z. Then one of the angles of triangle ABC is greater than 3α� 90�.
Solution for G61. Assume the contrary. As in Solution 2, we assume that the incenter I of
△ABC lies in △AY Z, and the tangency point A1 of ω and BC lies on segment CX. Surely,=Y ZA ¨ 180� � =Y ZX � 120�, hence points I and Y lie on one side of the perpendicular
bisector to XY ; therefore IX ¡ IY . Moreover, ω intersects segment XY at two points, and
therefore the projection M of I onto XY lies on the segment XY . In this case, we will prove
that =C ¡ 120�.

Let Y K, Y L be two tangents from point Y to ω (points K and A1 lie on one side of XY ;
if Y lies on ω, we say K � L � Y ); one of the points K and L is in fact a tangency point B1

of ω and AC. From symmetry, we have =Y IK � =Y IL. On the other hand, since IX ¡ IY ,
we get XM   XY which implies =A1XY   =KY X.

Next, we have =MIY � 90��=IY X   90��=ZY X � 30�. Since IA1 K A1X, IM K XY ,
IK K Y K we get =MIA1 � =A1XY   =KY X � =MIK. Finally, we get=A1IK   =A1IL � p=A1IM �=MIKq � p=KIY �=Y ILq  2=MIK � 2=KIY � 2=MIY   60�.
Hence, =A1IB1   60�, and therefore =ACB � 180� �=A1IB1 ¡ 120�, as desired.
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Comment 1. The estimate claimed in G61 is sharp. Actually, if =BAC ¡ 120�, one can consider an
equilateral triangle XY Z with Z � A, Y P AC, X P BC (such triangle exists since =ACB   60�). It
intersects with the angle bisector of =BAC only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle XY Z,
but here we need some additional condition. The statement reads as follows.

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, α is the least
angle of △XY Z, and all sides of triangle XY Z are greater than 2r cot α, where r is the inradius
of △ABC. Then one of the angles of triangle ABC is greater than 2α.

The additional condition is needed to verify that XM ¡ Y M since it cannot be shown in the
original way. Actually, we have =MY I ¡ α, IM   r, hence Y M   r cot α. Now, if we have
XY � XM � Y M ¡ 2r cot α, then surely XM ¡ Y M .

On the other hand, this additional condition follows easily from the conditions of the original
problem. Actually, if I P △AY Z, then the diameter of ω parallel to Y Z is contained in △AY Z and
is thus shorter than Y Z. Hence Y Z ¡ 2r ¡ 2r cot 60�.
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G7. Three circular arcs γ1, γ2, and γ3 connect the points A and C. These arcs lie in the same
half-plane defined by line AC in such a way that arc γ2 lies between the arcs γ1 and γ3. Point
B lies on the segment AC. Let h1, h2, and h3 be three rays starting at B, lying in the same
half-plane, h2 being between h1 and h3. For i, j � 1, 2, 3, denote by Vij the point of intersection
of hi and γj (see the Figure below).

Denote by ǑVijVkj
ǑVkℓViℓ the curved quadrilateral, whose sides are the segments VijViℓ, VkjVkℓ

and arcs VijVkj and ViℓVkℓ. We say that this quadrilateral is circumscribed if there exists a circle
touching these two segments and two arcs.

Prove that if the curved quadrilaterals ǑV11V21
ǑV22V12, ǑV12V22

ǑV23V13, ǑV21V31
ǑV32V22 are circum-

scribed, then the curved quadrilateral ǑV22V32
ǑV33V23 is circumscribed, too.

A C

h3

h2

h1

V13
V33

V12

V11

V32

B

V22

γ3

V23

γ2

γ1

V21 V31

Fig. 1

(Hungary)

Solution. Denote by Oi and Ri the center and the radius of γi, respectively. Denote also by H

the half-plane defined by AC which contains the whole configuration. For every point P in
the half-plane H , denote by dpP q the distance between P and line AC. Furthermore, for any
r ¡ 0, denote by ΩpP, rq the circle with center P and radius r.

Lemma 1. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are tangent to hi and hj .

(a) The locus of the centers of these circles is the angle bisector βij between hi and hj .
(b) There is a constant uij such that r � uij � dpP q for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to hi

and hj are homothetic with the common homothety center B (see Fig. 2). Then part (b) also
becomes trivial. l
Lemma 2. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are externally tangent to γi and internally tangent to γj.

(a) The locus of the centers of these circles is an ellipse arc εij with end-points A and C.
(b) There is a constant vij such that r � vij � dpP q for all such circles.

Proof. (a) Notice that the circle ΩpP, rq is externally tangent to γi and internally tangent to γj

if and only if OiP � Ri � r and Oj � Rj � r. Therefore, for each such circle we have

OiP �OjP � OiA�OjA � OiC �OjC � Ri �Rj .

Such points lie on an ellipse with foci Oi and Oj; the diameter of this ellipse is Ri �Rj , and it
passes through the points A and C. Let εij be that arc AC of the ellipse which runs inside the
half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γi and γj. Therefore, if some point P lies on εij,
then OiP ¡ Ri and OjP   Rj . Now, we choose r � OiP � Ri � Rj � OjP ¡ 0; then the
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circle ΩpP, rq touches γi externally and touches γj internally, so P belongs to the locus under
investigation.

(b) Let ~ρ � ÝÑ
AP , ~ρi � ÝÝÑ

AOi, and ~ρj � ÝÝÑ
AOj; let dij � OiOj, and let ~v be a unit vector

orthogonal to AC and directed toward H . Then we have |~ρi| � Ri, |~ρj| � Rj, |ÝÝÑOiP | �|~ρ� ~ρi| � Ri � r, |ÝÝÑOjP | � |~ρ� ~ρj| � Rj � r, hencep~ρ� ~ρiq2 � p~ρ� ~ρjq2 � pRi � rq2 � pRj � rq2,p~ρ 2
i � ~ρ 2

j q � 2~ρ � p~ρj � ~ρiq � pR2
i �R2

j q � 2rpRi �Rjq,
dij � dpP q � dij~v � ~ρ � p~ρj � ~ρiq � ~ρ � rpRi �Rjq.

Therefore,

r � dij

Ri �Rj

� dpP q,
and the value vij � dij

Ri �Rj

does not depend on P . l
Lemma 3. The curved quadrilateral Qij � ǑVi,jVi�1,j

ǑVi�1,j�1Vi,j�1 is circumscribed if and only
if ui,i�1 � vj,j�1.

Proof. First suppose that the curved quadrilateral Qij is circumscribed and ΩpP, rq is its in-
scribed circle. By Lemma 1 and Lemma 2 we have r � ui,i�1 � dpP q and r � vj,j�1 � dpP q as
well. Hence, ui,i�1 � vj,j�1.

To prove the opposite direction, suppose ui,i�1 � vj,j�1. Let P be the intersection of the
angle bisector βi,i�1 and the ellipse arc εj,j�1. Choose r � ui,i�1 � dpP q � vj,j�1 � dpP q. Then
the circle ΩpP, rq is tangent to the half lines hi and hi�1 by Lemma 1, and it is tangent to the
arcs γj and γj�1 by Lemma 2. Hence, the curved quadrilateral Qij is circumscribed. l

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the
equalities u12 � v12, u12 � v23, and u23 � v12 hold, then u23 � v23 holds as well.
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Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution.
If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle
touching three of h2, h3, γ2, and γ3, and then prove that it is tangent to the fourth one in either
synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most
students will use coordinates or vectors to examine the locus of the centers, and these approaches are
less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line OiOj .
The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γi and γj, lying on OiOj ; this point
does not depend on P . Let U and V be the points of tangency of circle σ � ΩpP, rq with γi and γj,
respectively (then r � PU � PV ); in other words, points U and V are the intersection points of
rays OiP , OjP with arcs γi, γj respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to
triangle OiOjP ), the points U , V and S are collinear. Let T be the intersection point of line AC and
the common tangent to σ and γi at U ; then T is the radical center of σ, γi and γj, hence TV is the
common tangent to σ and γj.

Let Q be the projection of P onto the line AC. By the right angles, the points U , V and Q lie on
the circle with diameter PT . From this fact and the equality PU � PV we get =UQP � =UV P �=V UP � =SUOi. Since OiS ‖ PQ, we have =SOiU � =QPU . Hence, the triangles SOiU and UPQ

are similar and thus
r

dpP q � PU

PQ
� OiS

OiU
� OiS

Ri
; the last expression is constant since S is a constant

point. l
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2. Using some known facts about conics, the same statement can be proved in a very short way.
Denote by ℓ the directrix of ellipse of εij related to the focus Oj ; since εij is symmetrical about OiOj ,
we have ℓ ‖ AC. Recall that for each point P P εij , we have POj � ǫ � dℓpP q, where dℓpP q is the
distance from P to ℓ, and ǫ is the eccentricity of εij (see Fig. 5).

Now we have

r � Rj � pRj � rq � AOj � POj � ǫ
�
dℓpAq � dℓpP q� � ǫ

�
dpP q � dpAq� � ǫ � dpP q,

and ǫ does not depend on P . l
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Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point px, yq and radius r ¡ 0, represent the circle Ω

�px, yq, r� by the point px, y, rq
in space. This point is the apex of the cone with base circle Ω

�px, yq, r� and height r. According to
Lemma 1, the circles which are tangent to hi and hj correspond to the points of a half line β1

ij , starting
at B.

Now we translate Lemma 2. Take some 1 ¨ i   j ¨ 3, and consider those circles which are
internally tangent to γj. It is easy to see that the locus of the points which represent these circles is
a subset of a cone, containing γj. Similarly, the circles which are externally tangent to γi correspond
to the points on the extension of another cone, which has its apex on the opposite side of the base
plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are
parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the
intersection of the two cones is a a conic section — which is an ellipse, according to Lemma 2(a). The
points which represent the circles touching γi and γj is an ellipse arc ε1ij with end-points A and C.

γi

ε′ij

γj

β′
12 β′

23

ε′12

ε′23

Π

Σ

Fig. 6 Fig. 7

Thus, the curved quadrilateral Qij is circumscribed if and only if β1
i,i�1 and ε1j,j�1 intersect, i.e. if

they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that ε112, ε123,
β1

12 and β1
23 lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life:
the Palace of Creativity “Shabyt” (“Inspiration”) in Astana



Number Theory

N1. Find the least positive integer n for which there exists a set ts1, s2, . . . , snu consisting of
n distinct positive integers such that�

1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


 � 51

2010
.

N11. Same as Problem N1, but the constant
51

2010
is replaced by

42

2010
.

(Canada)

Answer for Problem N1. n � 39.

Solution for Problem N1. Suppose that for some n there exist the desired numbers; we

may assume that s1   s2   � � �   sn. Surely s1 ¡ 1 since otherwise 1 � 1

s1

� 0. So we have

2 ¨ s1 ¨ s2 � 1 ¨ � � � ¨ sn � pn� 1q, hence si © i� 1 for each i � 1, . . . , n. Therefore

51

2010
� �1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


© �1� 1

2


�
1� 1

3



. . .

�
1� 1

n� 1


 � 1

2
� 2

3
� � � n

n� 1
� 1

n � 1
,

which implies

n � 1 © 2010

51
� 670

17
¡ 39,

so n © 39.
Now we are left to show that n � 39 fits. Consider the set t2, 3, . . . , 33, 35, 36, . . . , 40, 67u

which contains exactly 39 numbers. We have

1

2
� 2

3
� � � 32

33
� 34

35
� � � 39

40
� 66

67
� 1

33
� 34

40
� 66

67
� 17

670
� 51

2010
, p1q

hence for n � 39 there exists a desired example.

Comment. One can show that the example p1q is unique.

Answer for Problem N11. n � 48.

Solution for Problem N11. Suppose that for some n there exist the desired numbers. In
the same way we obtain that si © i � 1. Moreover, since the denominator of the fraction
42

2010
� 7

335
is divisible by 67, some of si’s should be divisible by 67, so sn © si © 67. This

means that
42

2010
© 1

2
� 2

3
� � � n � 1

n
� �1� 1

67


 � 66

67n
,
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which implies

n © 2010 � 66

42 � 67
� 330

7
¡ 47,

so n © 48.
Now we are left to show that n � 48 fits. Consider the set t2, 3, . . . , 33, 36, 37, . . . , 50, 67u

which contains exactly 48 numbers. We have

1

2
� 2

3
� � � 32

33
� 35

36
� � � 49

50
� 66

67
� 1

33
� 35

50
� 66

67
� 7

335
� 42

2010
,

hence for n � 48 there exists a desired example.

Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit
harder. On the other hand, the example in this version is not unique. Another example is

1

2
� 2

3
� � � 46

47
� 66

67
� 329

330
� 1

67
� 66

330
� 329

47
� 7

67 � 5 � 42

2010
.

Comment 2. N11 was the Proposer’s formulation of the problem. We propose N1 according to the
number of current IMO.
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N2. Find all pairs pm, nq of nonnegative integers for which

m2 � 2 � 3n � m
�
2n�1 � 1

�
. (1)

(Australia)

Answer. p6, 3q, p9, 3q, p9, 5q, p54, 5q.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For
n ¨ 5 the solutions are listed in the following table.

case equation discriminant integer roots
n � 0 m2 �m� 2 � 0 �7 none
n � 1 m2 � 3m� 6 � 0 �15 none
n � 2 m2 � 7m� 18 � 0 �23 none
n � 3 m2 � 15m� 54 � 0 9 m � 6 and m � 9
n � 4 m2 � 31m� 162 � 0 313 none
n � 5 m2 � 63m� 486 � 0 2025 � 452 m � 9 and m � 54

We prove that there is no solution for n © 6.

Suppose that pm, nq satisfies (1) and n © 6. Since m
�� 2 � 3n � m

�
2n�1 � 1

� �m2, we have
m � 3p with some 0 ¨ p ¨ n or m � 2 � 3q with some 0 ¨ q ¨ n.

In the first case, let q � n� p; then

2n�1 � 1 � m� 2 � 3n

m
� 3p � 2 � 3q.

In the second case let p � n� q. Then

2n�1 � 1 � m� 2 � 3n

m
� 2 � 3q � 3p.

Hence, in both cases we need to find the nonnegative integer solutions of

3p � 2 � 3q � 2n�1 � 1, p� q � n. (2)

Next, we prove bounds for p, q. From (2) we get

3p   2n�1 � 8
n�1

3   9
n�1

3 � 3
2pn�1q

3

and
2 � 3q   2n�1 � 2 � 8n

3   2 � 9n
3 � 2 � 3 2n

3   2 � 3 2pn�1q
3 ,

so p, q   2pn�1q
3

. Combining these inequalities with p� q � n, we obtain

n� 2

3
  p, q   2pn� 1q

3
. (3)

Now let h � minpp, qq. By (3) we have h ¡ n�2

3
; in particular, we have h ¡ 1. On the

left-hand side of (2), both terms are divisible by 3h, therefore 9
�� 3h

�� 2n�1 � 1. It is easy check
that ord9p2q � 6, so 9

�� 2n�1� 1 if and only if 6
�� n� 1. Therefore, n� 1 � 6r for some positive

integer r, and we can write

2n�1 � 1 � 43r � 1 � p42r � 4r � 1qp2r � 1qp2r � 1q. (4)
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Notice that the factor 42r � 4r � 1 � p4r � 1q2 � 3 � 4r is divisible by 3, but it is never
divisible by 9. The other two factors in (4), 2r � 1 and 2r � 1 are coprime: both are odd and
their difference is 2. Since the whole product is divisible by 3h, we have either 3h�1

�� 2r � 1 or
3h�1

�� 2r � 1. In any case, we have 3h�1 ¨ 2r � 1. Then

3h�1 ¨ 2r � 1 ¨ 3r � 3
n�1

6 ,

n� 2

3
� 1   h � 1 ¨ n � 1

6
,

n   11.

But this is impossible since we assumed n © 6, and we proved 6
�� n � 1.
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N3. Find the smallest number n such that there exist polynomials f1, f2, . . . , fn with rational
coefficients satisfying

x2 � 7 � f1pxq2 � f2pxq2 � � � � � fnpxq2.
(Poland)

Answer. The smallest n is 5.

Solution 1. The equality x2 � 7 � x2 � 22 � 12 � 12 � 12 shows that n ¨ 5. It remains to
show that x2� 7 is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that x2 � 7 � f1pxq2 � f2pxq2 � f3pxq2 � f4pxq2, where the
coefficients of polynomials f1, f2, f3 and f4 are rational (some of these polynomials may be
zero).

Clearly, the degrees of f1, f2, f3 and f4 are at most 1. Thus fipxq � aix� bi for i � 1, 2, 3, 4
and some rationals a1, b1, a2, b2, a3, b3, a4, b4. It follows that x2 � 7 � °4

i�1paix � biq2 and
hence

4̧

i�1

a2
i � 1,

4̧

i�1

aibi � 0,
4̧

i�1

b2
i � 7. (1)

Let pi � ai � bi and qi � ai � bi for i � 1, 2, 3, 4. Then

4̧

i�1

p2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8,

4̧

i�1

q2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8

and
4̧

i�1

piqi � 4̧

i�1

a2
i � 4̧

i�1

b2
i � �6,

which means that there exist a solution in integers x1, y1, x2, y2, x3, y3, x4, y4 and m ¡ 0 of
the system of equations

(i)
4̧

i�1

x2
i � 8m2, (ii)

4̧

i�1

y2
i � 8m2, (iii)

4̧

i�1

xiyi � �6m2.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is

odd then x2 � 1 pmod 8q. Otherwise (i.e., if x is even) we have x2 � 0 pmod 8q or x2 � 4pmod 8q. Hence, by (i), we get that x1, x2, x3 and x4 are even. Similarly, by (ii), we get that
y1, y2, y3 and y4 are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows
that px1

2
, y1

2
, x2

2
, y2

2
, x3

2
, y3

2
, x4

2
, y4

2
, m

2
q is a solution of the system of equations (i), (ii) and (iii),

which contradicts the minimality of m.

Solution 2. We prove that n ¨ 4 is impossible. Define the numbers ai, bi for i � 1, 2, 3, 4 as
in the previous solution.

By Euler’s identity we havepa2
1 � a2

2 � a2
3 � a2

4qpb2
1 � b2

2 � b2
3 � b2

4q �pa1b1 � a2b2 � a3b3 � a4b4q2 � pa1b2 � a2b1 � a3b4 � a4b3q2�pa1b3 � a3b1 � a4b2 � a2b4q2 � pa1b4 � a4b1 � a2b3 � a3b2q2.
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So, using the relations (1) from the Solution 1 we get that

7 � �m1

m

	2 � �m2

m

	2 � �m3

m

	2

, (2)

where

m1

m
� a1b2 � a2b1 � a3b4 � a4b3,

m2

m
� a1b3 � a3b1 � a4b2 � a2b4,

m3

m
� a1b4 � a4b1 � a2b3 � a3b2

and m1, m2, m3 P Z, m P N.
Let m be a minimum positive integer number for which (2) holds. Then

8m2 � m2
1 �m2

2 �m2
3 �m2.

As in the previous solution, we get that m1, m2, m3, m are all even numbers. Then
�

m1

2
, m2

2
, m3

2
, m

2

�
is also a solution of (2) which contradicts the minimality of m. So, we have n © 5. The example
with n � 5 is already shown in Solution 1.
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N4. Let a, b be integers, and let P pxq � ax3 � bx. For any positive integer n we say that the
pair pa, bq is n-good if n

�� P pmq � P pkq implies n
�� m � k for all integers m, k. We say thatpa, bq is very good if pa, bq is n-good for infinitely many positive integers n.

(a) Find a pair pa, bq which is 51-good, but not very good.
(b) Show that all 2010-good pairs are very good.

(Turkey)

Solution. (a) We show that the pair p1,�512q is good but not very good. Let P pxq � x3�512x.
Since P p51q � P p0q, the pair p1,�512q is not n-good for any positive integer that does not
divide 51. Therefore, p1,�512q is not very good.

On the other hand, if P pmq � P pkq pmod 51q, then m3 � k3 pmod 51q. By Fermat’s
theorem, from this we obtain

m � m3 � k3 � k pmod 3q and m � m33 � k33 � k pmod 17q.
Hence we have m � k pmod 51q. Therefore p1,�512q is 51-good.

(b) We will show that if a pair pa, bq is 2010-good then pa, bq is 67i-good for all positive
integer i.

Claim 1. If pa, bq is 2010-good then pa, bq is 67-good.

Proof. Assume that P pmq � P pkq pmod 67q. Since 67 and 30 are coprime, there exist integers
m1 and k1 such that k1 � k pmod 67q, k1 � 0 pmod 30q, and m1 � m pmod 67q, m1 � 0pmod 30q. Then we have P pm1q � P p0q � P pk1q pmod 30q and P pm1q � P pmq � P pkq � P pk1qpmod 67q, hence P pm1q � P pk1q pmod 2010q. This implies m1 � k1 pmod 2010q as pa, bq is
2010-good. It follows that m � m1 � k1 � k pmod 67q. Therefore, pa, bq is 67-good. l
Claim 2. If pa, bq is 67-good then 67

�� a.

Proof. Suppose that 67 � �� a. Consider the sets tat2 pmod 67q : 0 ¨ t ¨ 33u and t�3as2 � b

mod 67 : 0 ¨ s ¨ 33u. Since a � 0 pmod 67q, each of these sets has 34 elements. Hence they
have at least one element in common. If at2 � �3as2� b pmod 67q then for m � t�s, k � 	2s
we have

P pmq � P pkq � apm3 � k3q � bpm� kq � pm� kq�apm2 �mk � k2q � b
�� pt� 3sqpat2 � 3as2 � bq � 0 pmod 67q.

Since pa, bq is 67-good, we must have m � k pmod 67q in both cases, that is, t � 3s pmod 67q
and t � �3s pmod 67q. This means t � s � 0 pmod 67q and b � �3as2 � at2 � 0 pmod 67q.
But then 67

�� P p7q�P p2q � 67 �5a�5b and 67 � �� 7�2, contradicting that pa, bq is 67-good. l
Claim 3. If pa, bq is 2010-good then pa, bq is 67i-good all i © 1.

Proof. By Claim 2, we have 67
�� a. If 67

�� b, then P pxq � P p0q pmod 67q for all x, contradicting
that pa, bq is 67-good. Hence, 67 � �� b.

Suppose that 67i
�� P pmq � P pkq � pm� kq�apm2 �mk � k2q � b

�
. Since 67

�� a and 67 � �� b,
the second factor apm2�mk� k2q� b is coprime to 67 and hence 67i

�� m� k. Therefore, pa, bq
is 67i-good. l
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not
a quadratic residue modulo 67, either au2 � �b pmod 67q or 3av2 � �b pmod 67q has a solution.
The settings pm,kq � pu, 0q in the first case and pm,kq � pv,�2vq in the second case lead to b � 0pmod 67q.
Comment 2. The pair p67, 30q is n-good if and only if n � d � 67i, where d

�� 30 and i © 0. It shows
that in part (b), one should deal with the large powers of 67 to reach the solution. The key property
of number 67 is that it has the form 3k� 1, so there exists a nontrivial cubic root of unity modulo 67.
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N5. Let N be the set of all positive integers. Find all functions f : N Ñ N such that the
number

�
fpmq � n

��
m� fpnq� is a square for all m, n P N.

(U.S.A.)

Answer. All functions of the form fpnq � n � c, where c P NY t0u.
Solution. First, it is clear that all functions of the form fpnq � n� c with a constant nonneg-
ative integer c satisfy the problem conditions since

�
fpmq � n

��
fpnq �m

� � pn�m� cq2 is a
square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p
�� fpkq�fpℓq for some prime p and positive integers k, ℓ. Then p

�� k�ℓ.

Proof. Suppose first that p2
�� fpkq � fpℓq, so fpℓq � fpkq � p2a for some integer a. Take some

positive integer D ¡ maxtfpkq, fpℓqu which is not divisible by p and set n � pD � fpkq. Then
the positive numbers n � fpkq � pD and n � fpℓq � pD � �fpℓq � fpkq� � ppD � paq are
both divisible by p but not by p2. Now, applying the problem conditions, we get that both the
numbers

�
fpkq � n

��
fpnq � k

�
and

�
fpℓq � n

��
fpnq � ℓ

�
are squares divisible by p (and thus

by p2); this means that the multipliers fpnq � k and fpnq � ℓ are also divisible by p, therefore
p
�� �fpnq � k

�� �fpnq � ℓ
� � k � ℓ as well.

On the other hand, if fpkq � fpℓq is divisible by p but not by p2, then choose the same
number D and set n � p3D� fpkq. Then the positive numbers fpkq�n � p3D and fpℓq�n �
p3D � �fpℓq � fpkq� are respectively divisible by p3 (but not by p4) and by p (but not by p2).
Hence in analogous way we obtain that the numbers fpnq � k and fpnq � ℓ are divisible by p,
therefore p

�� �fpnq � k
�� �fpnq � ℓ

� � k � ℓ. l
We turn to the problem. First, suppose that fpkq � fpℓq for some k, ℓ P N. Then by Lemma

we have that k � ℓ is divisible by every prime number, so k � ℓ � 0, or k � ℓ. Therefore, the
function f is injective.

Next, consider the numbers fpkq and fpk � 1q. Since the number pk � 1q � k � 1 has no
prime divisors, by Lemma the same holds for fpk � 1q � fpkq; thus |fpk � 1q � fpkq| � 1.

Now, let fp2q� fp1q � q, |q| � 1. Then we prove by induction that fpnq � fp1q� qpn� 1q.
The base for n � 1, 2 holds by the definition of q. For the step, if n ¡ 1 we have fpn� 1q �
fpnq�q � fp1q�qpn�1q�q. Since fpnq � fpn�2q � fp1q�qpn�2q, we get fpnq � fp1q�qn,
as desired.

Finally, we have fpnq � fp1q�qpn�1q. Then q cannot be �1 since otherwise for n © fp1q�1
we have fpnq ¨ 0 which is impossible. Hence q � 1 and fpnq � pfp1q � 1q � n for each n P N,
and fp1q � 1 © 0, as desired.
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N6. The rows and columns of a 2n � 2n table are numbered from 0 to 2n � 1. The cells of the
table have been colored with the following property being satisfied: for each 0 ¨ i, j ¨ 2n � 1,
the jth cell in the ith row and the pi � jqth cell in the jth row have the same color. (The
indices of the cells in a row are considered modulo 2n.)

Prove that the maximal possible number of colors is 2n.

(Iran)

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; pi, jq
refers to the jth cell in the ith row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are
the arrows pi, jq Ñ pj, i� jq for all 0 ¨ i, j ¨ 2n � 1. From each vertex pi, jq, exactly one edge
passes (to pj, i � j mod 2nq); conversely, to each cell pj, kq exactly one edge is directed (from
the cell pk � j mod 2n, jqq. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by
the problem condition. On the other hand, if each cycle has its own color, the obtained coloring
obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the
same as the number of cycles, and we have to prove that this number is 2n.

Next, consider any cycle pi1, j1q, pi2, j2q, . . . ; we will describe it in other terms. Define a
sequence pa0, a1, . . . q by the relations a0 � i1, a1 � j1, an�1 � an � an�1 for all n © 1 (we
say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows
that ik � ak�1 pmod 2nq, jk � ak pmod 2nq. Hence we need to investigate the behavior of
Fibonacci-type sequences modulo 2n.

Denote by F0, F1, . . . the Fibonacci numbers defined by F0 � 0, F1 � 1, and Fn�2 �
Fn�1 � Fn for n © 0. We also set F�1 � 1 according to the recurrence relation.

For every positive integer m, denote by νpmq the exponent of 2 in the prime factorization
of m, i.e. for which 2νpmq �� m but 2νpmq�1 � �� m.

Lemma 1. For every Fibonacci-type sequence a0, a1, a2, . . . , and every k © 0, we have ak �
Fk�1a0 � Fka1.

Proof. Apply induction on k. The base cases k � 0, 1 are trivial. For the step, from the
induction hypothesis we get

ak�1 � ak � ak�1 � pFk�1a0 � Fka1q � pFk�2a0 � Fk�1a1q � Fka0 � Fk�1a1. l
Lemma 2. For every m © 3,

(a) we have νpF3�2m�2q � m;
(b) d � 3 � 2m�2 is the least positive index for which 2m

�� Fd;
(c) F3�2m�2�1 � 1� 2m�1 pmod 2mq.

Proof. Apply induction on m. In the base case m � 3 we have νpF3�2m�2q � F6 � 8, so
νpF3�2m�2q � νp8q � 3, the preceding Fibonacci-numbers are not divisible by 8, and indeed
F3�2m�2�1 � F7 � 13 � 1� 4 pmod 8q.

Now suppose that m ¡ 3 and let k � 3 � 2m�3. By applying Lemma 1 to the Fibonacci-type
sequence Fk, Fk�1, . . . we get

F2k � Fk�1Fk � FkFk�1 � pFk�1 � FkqFk � Fk�1Fk � 2Fk�1Fk � F 2
k ,

F2k�1 � Fk � Fk � Fk�1 � Fk�1 � F 2
k � F 2

k�1.

By the induction hypothesis, νpFkq � m � 1, and Fk�1 is odd. Therefore we get νpF 2
k q �

2pm� 1q ¡ pm � 1q � 1 � νp2FkFk�1q, which implies νpF2kq � m, establishing statement (a).
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Moreover, since Fk�1 � 1� 2m�2 � a2m�1 for some integer a, we get

F2k�1 � F 2
k � F 2

k�1 � 0� p1� 2m�2 � a2m�1q2 � 1� 2m�1 pmod 2mq,
as desired in statement (c).

We are left to prove that 2m � �� Fℓ for ℓ   2k. Assume the contrary. Since 2m�1
�� Fℓ, from

the induction hypothesis it follows that ℓ ¡ k. But then we have Fℓ � Fk�1Fℓ�k � FkFℓ�k�1,
where the second summand is divisible by 2m�1 but the first one is not (since Fk�1 is odd and
ℓ� k   k). Hence the sum is not divisible even by 2m�1. A contradiction. l

Now, for every pair of integers pa, bq � p0, 0q, let µpa, bq � mintνpaq, νpbqu. By an obvious in-
duction, for every Fibonacci-type sequence A � pa0, a1, . . . q we have µpa0, a1q � µpa1, a2q � . . .;
denote this common value by µpAq. Also denote by pnpAq the period of this sequence modulo
2n, that is, the least p ¡ 0 such that ak�p � ak pmod 2nq for all k © 0.

Lemma 3. Let A � pa0, a1, . . . q be a Fibonacci-type sequence such that µpAq � k   n. Then
pnpAq � 3 � 2n�1�k.

Proof. First, we note that the sequence pa0, a1, . . . q has period p modulo 2n if and only if the
sequence pa0{2k, a1{2k, . . . q has period p modulo 2n�k. Hence, passing to this sequence we can
assume that k � 0.

We prove the statement by induction on n. It is easy to see that for n � 1, 2 the claim
is true; actually, each Fibonacci-type sequence A with µpAq � 0 behaves as 0, 1, 1, 0, 1, 1, . . .
modulo 2, and as 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, . . . modulo 4 (all pairs of residues from which at
least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that n © 3 and consider an arbitrary Fibonacci-type sequence A � pa0, a1, . . . q
with µpAq � 0. Obviously we should have pn�1pAq �� pnpAq, or, using the induction hypothesis,
s � 3 � 2n�2

�� pnpAq. Next, we may suppose that a0 is even; hence a1 is odd, and a0 � 2b0,
a1 � 2b1 � 1 for some integers b0, b1.

Consider the Fibonacci-type sequence B � pb0, b1, . . . q starting with pb0, b1q. Since a0 �
2b0 � F0, a1 � 2b1 � F1, by an easy induction we get ak � 2bk � Fk for all k © 0. By
the induction hypothesis, we have pn�1pBq �� s, hence the sequence p2b0, 2b1, . . . q is s-periodic
modulo 2n. On the other hand, by Lemma 2 we have Fs�1 � 1 � 2n�1 pmod 2nq, F2s � 0pmod 2nq, F2s�1 � 1 pmod 2nq, hence

as�1 � 2bs�1 � Fs�1 � 2b1 � 1� 2n�1 � 2b1 � 1 � a1 pmod 2nq,
a2s � 2b2s � F2s � 2b0 � 0 � a0 pmod 2nq,

a2s�1 � 2b2s�1 � F2s�1 � 2b1 � 1 � a1 pmod 2nq.
The first line means that A is not s-periodic, while the other two provide that a2s � a0,
a2s�1 � a1 and hence a2s�t � at for all t © 0. Hence s

�� pnpAq �� 2s and pnpAq � s, which means
that pnpAq � 2s, as desired. l

Finally, Lemma 3 provides a straightforward method of counting the number of cycles.
Actually, take any number 0 ¨ k ¨ n� 1 and consider all the cells pi, jq with µpi, jq � k. The
total number of such cells is 22pn�kq�22pn�k�1q � 3 �22n�2k�2. On the other hand, they are split
into cycles, and by Lemma 3 the length of each cycle is 3 � 2n�1�k. Hence the number of cycles

consisting of these cells is exactly
3 � 22n�2k�2

3 � 2n�1�k
� 2n�k�1. Finally, there is only one cell p0, 0q

which is not mentioned in the previous computation, and it forms a separate cycle. So the total
number of cycles is

1� n�1̧

k�0

2n�1�k � 1� p1� 2� 4� � � � � 2n�1q � 2n.
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Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that
k � 0 and show that in this case the period of paiqmodulo 2n coincides with the period of the Fibonacci
numbers modulo 2n; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence paiq modulo 2n if and only if we
have a0 � ap pmod 2nq, a1 � ap�1 pmod 2nq, that is,

a0 � ap � Fp�1a0 � Fpa1 � Fppa1 � a0q � Fp�1a0 pmod 2nq,
a1 � ap�1 � Fpa0 � Fp�1a1 pmod 2nq. (1)

Now, If p is a period of pFiq then we have Fp � F0 � 0 pmod 2nq and Fp�1 � F1 � 1 pmod 2nq, which
by (1) implies that p is a period of paiq as well.

Conversely, suppose that p is a period of paiq. Combining the relations of (1) we get

0 � a1 � a0 � a0 � a1 � a1

�
Fppa1 � a0q � Fp�1a0

�� a0pFpa0 � Fp�1a1q� Fppa2
1 � a1a0 � a2

0q pmod 2nq,
a2

1 � a1a0 � a2
0 � pa1 � a0qa1 � a0 � a0 � pa1 � a0qpFpa0 � Fp�1a1q � a0

�
Fppa1 � a0q � Fp�1a0

�� Fp�1pa2
1 � a1a0 � a2

0q pmod 2nq.
Since at least one of the numbers a0, a1 is odd, the number a2

1�a1a0�a2
0 is odd as well. Therefore the

previous relations are equivalent with Fp � 0 pmod 2nq and Fp�1 � 1 pmod 2nq, which means exactly
that p is a period of pF0, F1, . . . q modulo 2n.

So, the sets of periods of paiq and pFiq coincide, and hence the minimal periods coincide as well.
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