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Algebra

A1. A sequence of real numbers a0, a1, a2, . . . is defined by the formula

ai+1 = baic · 〈ai〉 for i ≥ 0;

here a0 is an arbitrary real number, baic denotes the greatest integer not exceeding ai, and
〈ai〉 = ai − baic. Prove that ai = ai+2 for i sufficiently large.

(Estonia)

Solution. First note that if a0 ≥ 0, then all ai ≥ 0. For ai ≥ 1 we have (in view of 〈ai〉 < 1
and baic > 0)

bai+1c ≤ ai+1 = baic · 〈ai〉 < baic;
the sequence baic is strictly decreasing as long as its terms are in [1,∞). Eventually there
appears a number from the interval [0, 1) and all subsequent terms are 0.

Now pass to the more interesting situation where a0 < 0; then all ai ≤ 0. Suppose the
sequence never hits 0. Then we have baic ≤ −1 for all i, and so

1 + bai+1c > ai+1 = baic · 〈ai〉 > baic;

this means that the sequence baic is nondecreasing. And since all its terms are integers from
(−∞,−1], this sequence must be constant from some term on:

baic = c for i ≥ i0 ; c a negative integer.

The defining formula becomes

ai+1 = c · 〈ai〉 = c(ai − c) = cai − c2.

Consider the sequence

bi = ai −
c2

c− 1
. (1)

It satisfies the recursion rule

bi+1 = ai+1 −
c2

c− 1
= cai − c2 − c2

c− 1
= cbi,

implying
bi = ci−i0bi0 for i ≥ i0. (2)

Since all the numbers ai (for i ≥ i0) lie in [c, c+1), the sequence (bi) is bounded. The equation
(2) can be satisfied only if either bi0 = 0 or |c| = 1, i.e., c = −1.
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In the first case, bi = 0 for all i ≥ i0, so that

ai =
c2

c− 1
for i ≥ i0.

In the second case, c = −1, equations (1) and (2) say that

ai = −1

2
+ (−1)i−i0bi0 =

{

ai0 for i = i0, i0 + 2, i0 + 4, . . . ,

1 − ai0 for i = i0 + 1, i0 + 3, i0 + 5, . . . .

Summarising, we see that (from some point on) the sequence (ai) either is constant or takes
alternately two values from the interval (−1, 0). The result follows.

Comment. There is nothing mysterious in introducing the sequence (bi). The sequence (ai) arises by
iterating the function x 7→ cx− c2 whose unique fixed point is c2/(c − 1).
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A2. The sequence of real numbers a0, a1, a2, . . . is defined recursively by

a0 = −1,
n∑

k=0

an−k
k + 1

= 0 for n ≥ 1.

Show that an > 0 for n ≥ 1.
(Poland)

Solution. The proof goes by induction. For n = 1 the formula yields a1 = 1/2. Take n ≥ 1,
assume a1, . . . , an > 0 and write the recurrence formula for n and n + 1, respectively as

n∑

k=0

ak
n− k + 1

= 0 and
n+1∑

k=0

ak
n− k + 2

= 0.

Subtraction yields

0 = (n+ 2)

n+1∑

k=0

ak
n− k + 2

− (n + 1)

n∑

k=0

ak
n− k + 1

= (n+ 2)an+1 +
n∑

k=0

(
n+ 2

n− k + 2
− n+ 1

n− k + 1

)

ak.

The coefficient of a0 vanishes, so

an+1 =
1

n+ 2

n∑

k=1

(
n + 1

n− k + 1
− n + 2

n− k + 2

)

ak =
1

n + 2

n∑

k=1

k

(n− k + 1)(n− k + 2)
ak.

The coefficients of a1, , . . . , an are all positive. Therefore, a1, . . . , an > 0 implies an+1 > 0.

Comment. Students familiar with the technique of generating functions will immediately recognise
∑
anx

n as the power series expansion of x/ ln(1 − x) (with value −1 at 0). But this can be a trap;
attempts along these lines lead to unpleasant differential equations and integrals hard to handle. Using
only tools from real analysis (e.g. computing the coefficients from the derivatives) seems very difficult.

On the other hand, the coefficients can be approached applying complex contour integrals and some
other techniques from complex analysis and an attractive formula can be obtained for the coefficients:

an =

∫ ∞

1

dx

xn
(
π2 + log2(x− 1)

) (n ≥ 1)

which is evidently positive.
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A3. The sequence c0, c1, . . . , cn, . . . is defined by c0 = 1, c1 = 0 and cn+2 = cn+1 + cn for n ≥ 0.
Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers
such that x =

∑

j∈J cj, y =
∑

j∈J cj−1. Prove that there exist real numbers α, β and m,M with
the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

m < αx+ βy < M

if and only if (x, y) ∈ S.

N. B. A sum over the elements of the empty set is assumed to be 0.
(Russia)

Solution. Let ϕ = (1 +
√

5)/2 and ψ = (1 −
√

5)/2 be the roots of the quadratic equation
t2 − t− 1 = 0. So ϕψ = −1, ϕ+ ψ = 1 and 1 + ψ = ψ2. An easy induction shows that the
general term cn of the given sequence satisfies

cn =
ϕn−1 − ψn−1

ϕ− ψ
for n ≥ 0.

Suppose that the numbers α and β have the stated property, for appropriately chosen m and M .
Since (cn, cn−1) ∈ S for each n, the expression

αcn + βcn−1 =
α√
5

(
ϕn−1 − ψn−1

)
+

β√
5

(
ϕn−2 − ψn−2

)
=

1√
5

[
(αϕ+ β)ϕn−2 − (αψ + β)ψn−2

]

is bounded as n grows to infinity. Because ϕ > 1 and −1 < ψ < 0, this implies αϕ+ β = 0.
To satisfy αϕ+ β = 0, one can set for instance α = ψ, β = 1. We now find the required m

and M for this choice of α and β.
Note first that the above displayed equation gives cnψ+ cn−1 = ψn−1, n ≥ 1. In the sequel,

we denote the pairs in S by (aJ , bJ), where J is a finite subset of the set N of positive integers
and aJ =

∑

j∈J cj , bJ =
∑

j∈J cj−1 . Since ψaJ + bJ =
∑

j∈J(cjψ + cj−1), we obtain

ψaJ + bJ =
∑

j∈J

ψj−1 for each (aJ , bJ) ∈ S. (1)

On the other hand, in view of −1 < ψ < 0,

−1 =
ψ

1 − ψ2
=

∞∑

j=0

ψ2j+1 <
∑

j∈J

ψj−1 <
∞∑

j=0

ψ2j =
1

1 − ψ2
= 1 − ψ = ϕ.

Therefore, according to (1),

−1 < ψaJ + bJ < ϕ for each (aJ , bJ ) ∈ S.

Thus m = −1 and M = ϕ is an appropriate choice.
Conversely, we prove that if an ordered pair of nonnegative integers (x, y) satisfies the

inequality −1 < ψx+ y < ϕ then (x, y) ∈ S.
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Lemma. Let x, y be nonnegative integers such that −1 < ψx+ y < ϕ. Then there exists a
subset J of N such that

ψx+ y =
∑

j∈J

ψj−1 (2)

Proof. For x = y = 0 it suffices to choose the empty subset of N as J , so let at least one of x, y
be nonzero. There exist representations of ψx+ y of the form

ψx+ y = ψi1 + · · · + ψik

where i1 ≤ · · · ≤ ik is a sequence of nonnegative integers, not necessarily distinct. For instance,
we can take x summands ψ1 = ψ and y summands ψ0 = 1. Consider all such representations
of minimum length k and focus on the ones for which i1 has the minimum possible value j1.
Among them, consider the representations where i2 has the minimum possible value j2. Upon
choosing j3, . . . , jk analogously, we obtain a sequence j1 ≤ · · · ≤ jk which clearly satisfies
ψx+ y =

∑k

r=1 ψ
jr . To prove the lemma, it suffices to show that j1, . . . , jk are pairwise distinct.

Suppose on the contrary that jr = jr+1 for some r = 1, . . . , k − 1. Let us consider the
case jr ≥ 2 first. Observing that 2ψ2 = 1 + ψ3, we replace jr and jr+1 by jr − 2 and jr + 1,
respectively. Since

ψjr + ψjr+1 = 2ψjr = ψjr−2(1 + ψ3) = ψjr−2 + ψjr+1,

the new sequence also represents ψx+ y as needed, and the value of ir in it contradicts the
minimum choice of jr.

Let jr = jr+1 = 0. Then the sum ψx+ y =
∑k

r=1 ψ
jr contains at least two summands equal

to ψ0 = 1. On the other hand js 6= 1 for all s, because the equality 1 + ψ = ψ2 implies that a
representation of minimum length cannot contain consecutive ir’s. It follows that

ψx+ y =
k∑

r=1

ψjr > 2 + ψ3 + ψ5 + ψ7 + · · · = 2 − ψ2 = ϕ,

contradicting the condition of the lemma.
Let jr = jr+1 = 1; then

∑k

r=1 ψ
jr contains at least two summands equal to ψ1 = ψ. Like in

the case jr = jr+1 = 0, we also infer that js 6= 0 and js 6= 2 for all s. Therefore

ψx+ y =

k∑

r=1

ψjr < 2ψ + ψ4 + ψ6 + ψ8 + · · · = 2ψ − ψ3 = −1,

which is a contradiction again. The conclusion follows. �

Now let the ordered pair (x, y) satisfy −1 < ψx+ y < ϕ; hence the lemma applies to (x, y).
Let J ⊂ N be such that (2) holds. Comparing (1) and (2), we conclude that ψx+ y = ψaJ + bJ .
Now, x, y, aJ and bJ are integers, and ψ is irrational. So the last equality implies x = aJ and
y = bJ . This shows that the numbers α = ψ, β = 1, m = −1, M = ϕ meet the requirements.

Comment. We present another way to prove the lemma, constructing the set J inductively. For
x = y = 0, choose J = ∅. We induct on n = 3x+ 2y. Suppose that an appropriate set J exists when
3x+ 2y < n. Now assume 3x+ 2y = n > 0. The current set J should be

either 1 ≤ j1 < j2 < · · · < jk or j1 = 0, 1 ≤ j2 < · · · < jk.

These sets fulfil the condition if

ψx+ y

ψ
= ψi1−1 + · · · + ψik−1 or

ψx+ y − 1

ψ
= ψi2−1 + · · · + ψik−1,
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respectively; therefore it suffices to find an appropriate set for ψx+y
ψ

or ψx+y−1
ψ

, respectively.

Consider ψx+y
ψ

. Knowing that

ψx+ y

ψ
= x+ (ψ − 1)y = ψy + (x− y),

let x′ = y, y′ = x− y and test the induction hypothesis on these numbers. We require ψx+y
ψ

∈ (−1, ϕ)
which is equivalent to

ψx+ y ∈ (ϕ · ψ, (−1) · ψ) = (−1,−ψ). (3)

Relation (3) implies y′ = x − y ≥ −ψx − y > ψ > −1; therefore x′, y′ ≥ 0. Moreover, we have
3x′ + 2y′ = 2x + y ≤ 2

3n; therefore, if (3) holds then the induction applies: the numbers x′, y′ are
represented in the form as needed, hence x, y also.

Now consider ψx+y−1
ψ

. Since

ψx+ y − 1

ψ
= x+ (ψ − 1)(y − 1) = ψ(y − 1) + (x− y + 1),

we set x′ = y − 1 and y′ = x− y + 1. Again we require that ψx+y−1
ψ

∈ (−1, ϕ), i.e.

ψx+ y ∈ (ϕ · ψ + 1, (−1) · ψ + 1) = (0, ϕ). (4)

If (4) holds then y − 1 ≥ ψx+ y − 1 > −1 and x− y+ 1 ≥ −ψx− y+ 1 > −ϕ+ 1 > −1, therefore
x′, y′ ≥ 0. Moreover, 3x′ + 2y′ = 2x+ y − 1 < 2

3n and the induction works.
Finally, (−1,−ψ) ∪ (0, ϕ) = (−1, ϕ) so at least one of (3) and (4) holds and the induction step is

justified.
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A4. Prove the inequality

∑

i<j

aiaj
ai + aj

≤ n

2(a1 + a2 + · · ·+ an)

∑

i<j

aiaj

for positive real numbers a1, a2, . . . , an.
(Serbia)

Solution 1. Let S =
∑

i ai. Denote by L and R the expressions on the left and right hand
side of the proposed inequality. We transform L and R using the identity

∑

i<j

(ai + aj) = (n− 1)
∑

i

ai. (1)

And thus:

L =
∑

i<j

aiaj
ai + aj

=
∑

i<j

1

4

(

ai + aj −
(ai − aj)

2

ai + aj

)

=
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

ai + aj
. (2)

To represent R we express the sum
∑

i<j

aiaj in two ways; in the second transformation

identity (1) will be applied to the squares of the numbers ai:

∑

i<j

aiaj =
1

2

(

S2 −
∑

i

a2
i

)

;

∑

i<j

aiaj =
1

2

∑

i<j

(

a2
i + a2

j − (ai − aj)
2
)

=
n− 1

2
·
∑

i

a2
i −

1

2

∑

i<j

(ai − aj)
2.

Multiplying the first of these equalities by n− 1 and adding the second one we obtain

n
∑

i<j

aiaj =
n− 1

2
· S2 − 1

2

∑

i<j

(ai − aj)
2.

Hence

R =
n

2S

∑

i<j

aiaj =
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

S
. (3)

Now compare (2) and (3). Since S ≥ ai + aj for any i < j, the claim L ≥ R results.
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Solution 2. Let S = a1 + a2 + · · · + an. For any i 6= j,

4
aiaj
ai + aj

= ai + aj −
(ai − aj)

2

ai + aj
≤ ai + aj −

(ai − aj)
2

a1 + a2 + · · ·+ an
=

∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

S
.

The statement is obtained by summing up these inequalities for all pairs i, j:

∑

i<j

aiaj
ai + aj

=
1

2

∑

i

∑

j 6=i

aiaj
ai + aj

≤ 1

8S

∑

i

∑

j 6=i

(
∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

)

=
1

8S

(
∑

k

∑

i6=k

∑

j 6=i

aiak +
∑

k

∑

j 6=k

∑

i6=j

ajak +
∑

i

∑

j 6=i

2aiaj

)

=
1

8S

(
∑

k

∑

i6=k

(n− 1)aiak +
∑

k

∑

j 6=k

(n− 1)ajak +
∑

i

∑

j 6=i

2aiaj

)

=
n

4S

∑

i

∑

j 6=i

aiaj =
n

2S

∑

i<j

aiaj .

Comment. Here is an outline of another possible approach. Examine the function R− L subject to
constraints

∑

i ai = S,
∑

i<j aiaj = U for fixed constants S,U > 0 (which can jointly occur as values
of these symmetric forms). Suppose that among the numbers ai there are some three, say ak, al, am
such that ak < al ≤ am. Then it is possible to decrease the value of R− L by perturbing this triple so
that in the new triple a′k, a

′
l, a

′
m one has a′k = a′l ≤ a′m, without touching the remaining ais and without

changing the values of S and U ; this requires some skill in algebraic manipulations. It follows that
the constrained minimum can be only attained for n− 1 of the ais equal and a single one possibly
greater. In this case, R− L ≥ 0 holds almost trivially.
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A5. Let a, b, c be the sides of a triangle. Prove that

√
b+ c− a√

b+
√
c−

√
a

+

√
c+ a− b√

c+
√
a−

√
b

+

√
a + b− c√

a +
√
b−

√
c
≤ 3.

(Korea)

Solution 1. Note first that the denominators are all positive, e.g.
√
a +

√
b >

√
a+ b >

√
c.

Let x =
√
b+

√
c−

√
a, y =

√
c+

√
a−

√
b and z =

√
a+

√
b−

√
c. Then

b+ c− a =

(
z + x

2

)2

+

(
x+ y

2

)2

−
(
y + z

2

)2

=
x2 + xy + xz − yz

2
= x2 − 1

2
(x− y)(x− z)

and √
b+ c− a√

b+
√
c−

√
a

=

√

1 − (x− y)(x− z)

2x2
≤ 1 − (x− y)(x− z)

4x2
,

applying
√

1 + 2u ≤ 1 + u in the last step. Similarly we obtain

√
c+ a− b√

c+
√
a−

√
b
≤ 1 − (z − x)(z − y)

4z2
and

√
a+ b− c√

a+
√
b−

√
c
≤ 1 − (y − z)(y − x)

4y2
.

Substituting these quantities into the statement, it is sufficient to prove that

(x− y)(x− z)

x2
+

(y − z)(y − x)

y2
+

(z − x)(z − y)

z2
≥ 0. (1)

By symmetry we can assume x ≤ y ≤ z. Then

(x− y)(x− z)

x2
=

(y − x)(z − x)

x2
≥ (y − x)(z − y)

y2
= −(y − z)(y − x)

y2
,

(z − x)(z − y)

z2
≥ 0

and (1) follows.

Comment 1. Inequality (1) is a special case of the well-known inequality

xt(x− y)(x− z) + yt(y − z)(y − x) + zt(z − x)(z − y) ≥ 0

which holds for all positive numbers x, y, z and real t; in our case t = −2. Case t > 0 is called Schur’s
inequality. More generally, if x ≤ y ≤ z are real numbers and p, q, r are nonnegative numbers such
that q ≤ p or q ≤ r then

p(x− y)(x− z) + q(y − z)(y − x) + r(z − x)(z − y) ≥ 0.
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Comment 2. One might also start using Cauchy–Schwarz’ inequality (or the root mean square
vs. arithmetic mean inequality) to the effect that

(
∑

√
b+ c− a√

b+
√
c−

√
a

)2

≤ 3 ·
∑ b+ c− a

(√
b+

√
c−

√
a
)2 , (2)

in cyclic sum notation. There are several ways to prove that the right-hand side of (2) never exceeds 9
(and this is just what we need). One of them is to introduce new variables x, y, z, as in Solution 1,
which upon some manipulation brings the problem again to inequality (1).

Alternatively, the claim that right-hand side of (2) is not greater than 9 can be expressed in terms
of the symmetric forms σ1 =

∑
x, σ2 =

∑
xy, σ3 = xyz equivalently as

4σ1σ2σ3 ≤ σ3
2 + 9σ2

3 , (3)

which is a known inequality. A yet different method to deal with the right-hand expression in (2) is
to consider

√
a,
√
b,
√
c as sides of a triangle. Through standard trigonometric formulas the problem

comes down to showing that
p2 ≤ 4R2 + 4Rr + 3r2, (4)

p, R and r standing for the semiperimeter, the circumradius and the inradius of that triangle. Again,
(4) is another known inequality. Note that the inequalities (1), (3), (4) are equivalent statements
about the same mathematical situation.

Solution 2. Due to the symmetry of variables, it can be assumed that a ≥ b ≥ c. We claim
that √

a+ b− c√
a+

√
b−

√
c
≤ 1 and

√
b+ c− a√

b+
√
c−

√
a

+

√
c+ a− b√

c+
√
a−

√
b
≤ 2.

The first inequality follows from

√
a + b− c−

√
a =

(a + b− c) − a√
a + b− c+

√
a
≤ b− c√

b+
√
c

=
√
b−

√
c.

For proving the second inequality, let p =
√
a+

√
b and q =

√
a−

√
b. Then a− b = pq and

the inequality becomes √
c− pq√
c− q

+

√
c+ pq√
c+ q

≤ 2.

From a ≥ b ≥ c we have p ≥ 2
√
c. Applying the Cauchy-Schwarz inequality,

(√
c− pq√
c− q

+

√
c+ pq√
c + q

)2

≤
(
c− pq√
c− q

+
c + pq√
c + q

)(
1√
c− q

+
1√
c+ q

)

=
2(c

√
c− pq2)

c− q2
· 2

√
c

c− q2
= 4 · c

2 −
√
cpq2

(c− q2)2
≤ 4 · c

2 − 2cq2

(c− q2)2
≤ 4.
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A6. Determine the smallest number M such that the inequality

∣
∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣
∣ ≤M

(
a2 + b2 + c2

)2

holds for all real numbers a, b, c.
(Ireland)

Solution. We first consider the cubic polynomial

P (t) = tb(t2 − b2) + bc(b2 − c2) + ct(c2 − t2).

It is easy to check that P (b) = P (c) = P (−b− c) = 0, and therefore

P (t) = (b− c)(t− b)(t− c)(t+ b+ c),

since the cubic coefficient is b− c. The left-hand side of the proposed inequality can therefore
be written in the form

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| = |P (a)| = |(b− c)(a− b)(a− c)(a+ b+ c)|.

The problem comes down to finding the smallest number M that satisfies the inequality

|(b− c)(a− b)(a− c)(a+ b+ c)| ≤M · (a2 + b2 + c2)2. (1)

Note that this expression is symmetric, and we can therefore assume a ≤ b ≤ c without loss of
generality. With this assumption,

|(a− b)(b− c)| = (b− a)(c− b) ≤
(

(b− a) + (c− b)

2

)2

=
(c− a)2

4
, (2)

with equality if and only if b− a = c− b, i.e. 2b = a+ c. Also

(
(c− b) + (b− a)

2

)2

≤ (c− b)2 + (b− a)2

2
,

or equivalently,

3(c− a)2 ≤ 2 · [(b− a)2 + (c− b)2 + (c− a)2], (3)

again with equality only for 2b = a+ c. From (2) and (3) we get

|(b− c)(a− b)(a− c)(a+ b+ c)|
≤ 1

4
· |(c− a)3(a+ b+ c)|

=
1

4
·
√

(c− a)6(a+ b+ c)2

≤ 1

4
·
√
(

2 · [(b− a)2 + (c− b)2 + (c− a)2]

3

)3

· (a + b+ c)2

=

√
2

2
·



 4

√
(

(b− a)2 + (c− b)2 + (c− a)2

3

)3

· (a + b+ c)2





2

.



18

By the weighted AM-GM inequality this estimate continues as follows:

|(b− c)(a− b)(a− c)(a+ b+ c)|

≤
√

2

2
·
(

(b− a)2 + (c− b)2 + (c− a)2 + (a+ b+ c)2

4

)2

=
9
√

2

32
· (a2 + b2 + c2)2.

We see that the inequality (1) is satisfied for M = 9
32

√
2, with equality if and only if 2b = a+ c

and
(b− a)2 + (c− b)2 + (c− a)2

3
= (a+ b+ c)2.

Plugging b = (a + c)/2 into the last equation, we bring it to the equivalent form

2(c− a)2 = 9(a+ c)2.

The conditions for equality can now be restated as

2b = a+ c and (c− a)2 = 18b2.

Setting b = 1 yields a = 1 − 3
2

√
2 and c = 1 + 3

2

√
2. We see that M = 9

32

√
2 is indeed the

smallest constant satisfying the inequality, with equality for any triple (a, b, c) proportional to
(
1 − 3

2

√
2, 1, 1 + 3

2

√
2
)
, up to permutation.

Comment. With the notation x = b − a, y = c − b, z = a − c, s = a+ b+ c and r2 = a2 + b2 + c2,
the inequality (1) becomes just |sxyz| ≤ Mr4 (with suitable constraints on s and r). The original
asymmetric inequality turns into a standard symmetric one; from this point on the solution can be
completed in many ways. One can e.g. use the fact that, for fixed values of

∑
x and

∑
x2, the product

xyz is a maximum/minimum only if some of x, y, z are equal, thus reducing one degree of freedom,
etc.

As observed by the proposer, a specific attraction of the problem is that the maximum is attained
at a point (a, b, c) with all coordinates distinct.



Combinatorics

C1. We have n ≥ 2 lamps L1, . . . , Ln in a row, each of them being either on or off . Every
second we simultaneously modify the state of each lamp as follows:
— if the lamp Li and its neighbours (only one neighbour for i = 1 or i = n, two neighbours for
other i) are in the same state, then Li is switched off;
— otherwise, Li is switched on.
Initially all the lamps are off except the leftmost one which is on.

(a) Prove that there are infinitely many integers n for which all the lamps will eventually
be off.

(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
(France)

Solution. (a) Experiments with small n lead to the guess that every n of the form 2k should
be good. This is indeed the case, and more precisely: let Ak be the 2k×2k matrix whose rows
represent the evolution of the system, with entries 0, 1 (for off and on respectively). The top
row shows the initial state [1, 0, 0, . . . , 0]; the bottom row shows the state after 2k − 1 steps.
The claim is that:

The bottom row of Ak is [1, 1, 1, . . . , 1].

This will of course suffice because one more move then produces [0, 0, 0, . . . , 0], as required.
The proof is by induction on k. The base k = 1 is obvious. Assume the claim to be true for a

k ≥ 1 and write the matrix Ak+1 in the block form

(
Ak Ok

Bk Ck

)

with four 2k×2k matrices. After

m steps, the last 1 in a row is at position m + 1. Therefore Ok is the zero matrix. According
to the induction hypothesis, the bottom row of [Ak Ok] is [1, . . . , 1, 0, . . . , 0], with 2k ones and
2k zeros. The next row is thus

[0, . . . , 0
︸ ︷︷ ︸

2k−1

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

2k−1

]

It is symmetric about its midpoint, and this symmetry is preserved in all subsequent rows
because the procedure described in the problem statement is left/right symmetric. Thus Bk is
the mirror image of Ck. In particular, the rightmost column of Bk is identical with the leftmost
column of Ck.

Imagine the matrix Ck in isolation from the rest of Ak+1. Suppose it is subject to evolution
as defined in the problem: the first (leftmost) term in a row depends only on the two first terms
in the preceding row, according as they are equal or not. Now embed Ck again in Ak. The
‘leftmost’ terms in the rows of Ck now have neighbours on their left side—but these neighbours
are their exact copies. Consequently the actual evolution within Ck is the same, whether or not
Ck is considered as a piece of Ak+1 or in isolation. And since the top row of Ck is [1, 0, . . . , 0],
it follows that Ck is identical with Ak.
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The bottom row of Ak is [1, 1, . . . , 1]; the same is the bottom row of Ck, hence also of Bk,
which mirrors Ck. So the bottom row of Ak+1 consists of ones only and the induction is
complete.

(b) There are many ways to produce an infinite sequence of those n for which the state
[0, 0, . . . , 0] will never be achieved. As an example, consider n = 2k + 1 (for k ≥ 1). The
evolution of the system can be represented by a matrix A of width 2k + 1 with infinitely many
rows. The top 2k rows form the matrix Ak discussed above, with one column of zeros attached
at its right.

In the next row we then have the vector [0, 0, . . . , 0, 1, 1]. But this is just the second row of A
reversed. Subsequent rows will be mirror copies of the foregoing ones, starting from the second
one. So the configuration [1, 1, 0, . . . , 0, 0], i.e. the second row of A, will reappear. Further rows
will periodically repeat this pattern and there will be no row of zeros.
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C2. A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into
two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals.

Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals.
Find the maximum possible number of isosceles triangles with two odd sides.

(Serbia)

Solution 1. Call an isosceles triangle odd if it has two odd sides. Suppose we are given a
dissection as in the problem statement. A triangle in the dissection which is odd and isosceles
will be called iso-odd for brevity.

Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of
the 2006-gon with endpoints A, B. Suppose that L consists of n segments. Then the number
of iso-odd triangles with vertices on L does not exceed n/2.

Proof. This is obvious for n = 2. Take n with 2 < n ≤ 1003 and assume the claim to be true
for every L of length less than n. Let now L (endpoints A, B) consist of n segments. Let PQ
be the longest diagonal which is a side of an iso-odd triangle PQS with all vertices on L (if
there is no such triangle, there is nothing to prove). Every triangle whose vertices lie on L is
obtuse or right-angled; thus S is the summit of PQS. We may assume that the five points
A,P, S,Q,B lie on L in this order and partition L into four pieces LAP , LPS, LSQ, LQB (the
outer ones possibly reducing to a point).

By the definition of PQ, an iso-odd triangle cannot have vertices on both LAP and LQB.
Therefore every iso-odd triangle within L has all its vertices on just one of the four pieces.
Applying to each of these pieces the induction hypothesis and adding the four inequalities we
get that the number of iso-odd triangles within L other than PQS does not exceed n/2. And
since each of LPS, LSQ consists of an odd number of sides, the inequalities for these two pieces
are actually strict, leaving a 1/2 + 1/2 in excess. Hence the triangle PSQ is also covered by
the estimate n/2. This concludes the induction step and proves the lemma. �

The remaining part of the solution in fact repeats the argument from the above proof.
Consider the longest dissecting diagonal XY . Let LXY be the shorter of the two parts of the
boundary with endpoints X, Y and let XY Z be the triangle in the dissection with vertex Z
not on LXY . Notice that XY Z is acute or right-angled, otherwise one of the segments XZ, Y Z
would be longer than XY . Denoting by LXZ , LY Z the two pieces defined by Z and applying
the lemma to each of LXY , LXZ , LY Z we infer that there are no more than 2006/2 iso-odd
triangles in all, unless XY Z is one of them. But in that case XZ and Y Z are odd diagonals
and the corresponding inequalities are strict. This shows that also in this case the total number
of iso-odd triangles in the dissection, including XY Z, is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the
2006-gon and draw a broken line joining every second vertex, starting from the selected one.
Since 2006 is even, the line closes. This already gives us the required 1003 iso-odd triangles.
Then we can complete the triangulation in an arbitrary fashion.
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Solution 2. Let the terms odd triangle and iso-odd triangle have the same meaning as in the
first solution.

Let ABC be an iso-odd triangle, with AB and BC odd sides. This means that there are
an odd number of sides of the 2006-gon between A and B and also between B and C. We say
that these sides belong to the iso-odd triangle ABC.

At least one side in each of these groups does not belong to any other iso-odd triangle.
This is so because any odd triangle whose vertices are among the points between A and B has
two sides of equal length and therefore has an even number of sides belonging to it in total.
Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave
one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each
group) to the triangle ABC.

To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing
an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection.

This value can be attained, as shows the example from the first solution.
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C3. Let S be a finite set of points in the plane such that no three of them are on a line. For
each convex polygon P whose vertices are in S, let a(P ) be the number of vertices of P , and
let b(P ) be the number of points of S which are outside P . Prove that for every real number x

∑

P

xa(P )(1 − x)b(P ) = 1,

where the sum is taken over all convex polygons with vertices in S.
NB. A line segment, a point and the empty set are considered as convex polygons of 2, 1

and 0 vertices, respectively.
(Colombia)

Solution 1. For each convex polygon P whose vertices are in S, let c(P ) be the number of
points of S which are inside P , so that a(P ) + b(P ) + c(P ) = n, the total number of points
in S. Denoting 1 − x by y,

∑

P

xa(P )yb(P ) =
∑

P

xa(P )yb(P )(x+ y)c(P ) =
∑

P

c(P )
∑

i=0

(
c(P )

i

)

xa(P )+iyb(P )+c(P )−i .

View this expression as a homogeneous polynomial of degree n in two independent variables
x, y. In the expanded form, it is the sum of terms xryn−r (0 ≤ r ≤ n) multiplied by some
nonnegative integer coefficients.

For a fixed r, the coefficient of xryn−r represents the number of ways of choosing a convex
polygon P and then choosing some of the points of S inside P so that the number of vertices
of P and the number of chosen points inside P jointly add up to r.

This corresponds to just choosing an r-element subset of S. The correspondence is bijective
because every set T of points from S splits in exactly one way into the union of two disjoint
subsets, of which the first is the set of vertices of a convex polygon — namely, the convex hull
of T — and the second consists of some points inside that polygon.

So the coefficient of xryn−r equals
(
n

r

)
. The desired result follows:

∑

P

xa(P )yb(P ) =

n∑

r=0

(
n

r

)

xryn−r = (x+ y)n = 1.
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Solution 2. Apply induction on the number n of points. The case n = 0 is trivial. Let n > 0
and assume the statement for less than n points. Take a set S of n points.

Let C be the set of vertices of the convex hull of S, let m = |C|.
Let X ⊂ C be an arbitrary nonempty set. For any convex polygon P with vertices in the

set S \ X, we have b(P ) points of S outside P . Excluding the points of X — all outside P
— the set S \ X contains exactly b(P ) − |X| of them. Writing 1 − x = y, by the induction
hypothesis

∑

P⊂S\X

xa(P )yb(P )−|X| = 1

(where P ⊂ S \X means that the vertices of P belong to the set S \X). Therefore

∑

P⊂S\X

xa(P )yb(P ) = y|X|.

All convex polygons appear at least once, except the convex hull C itself. The convex hull
adds xm. We can use the inclusion-exclusion principle to compute the sum of the other terms:

∑

P 6=C

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

∑

P⊂S\X

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

yk

=
m∑

k=1

(−1)k−1

(
m

k

)

yk = −
(
(1 − y)m − 1

)
= 1 − xm

and then ∑

P

xa(P )yb(P ) =
∑

P=C

+
∑

P 6=C

= xm + (1 − xm) = 1.
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C4. A cake has the form of an n× n square composed of n2 unit squares. Strawberries lie
on some of the unit squares so that each row or column contains exactly one strawberry; call
this arrangement A.

Let B be another such arrangement. Suppose that every grid rectangle with one vertex
at the top left corner of the cake contains no fewer strawberries of arrangement B than of
arrangement A. Prove that arrangement B can be obtained from A by performing a number
of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its
top right corner and bottom left corner, and moving these two strawberries to the other two
corners of that rectangle.

(Taiwan)

Solution. We use capital letters to denote unit squares; O is the top left corner square. For
any two squares X and Y let [XY ] be the smallest grid rectangle containing these two squares.
Strawberries lie on some squares in arrangement A. Put a plum on each square of the target
configuration B. For a square X denote by a(X) and b(X) respectively the number of straw-
berries and the number of plums in [OX]. By hypothesis a(X) ≤ b(X) for each X, with strict
inequality for some X (otherwise the two arrangements coincide and there is nothing to prove).

The idea is to show that by a legitimate switch one can obtain an arrangement A′ such that

a(X) ≤ a′(X) ≤ b(X) for each X;
∑

X

a(X) <
∑

X

a′(X) (1)

(with a′(X) defined analogously to a(X); the sums range over all unit squares X). This will be
enough because the same reasoning then applies to A′, giving rise to a new arrangement A′′,
and so on (induction). Since

∑
a(X) <

∑
a′(X) <

∑
a′′(X) < . . . and all these sums do not

exceed
∑
b(X), we eventually obtain a sum with all summands equal to the respective b(X)s;

all strawberries will meet with plums.
Consider the uppermost row in which the plum and the strawberry lie on different squares

P and S (respectively); clearly P must be situated left to S. In the column passing through P ,
let T be the top square and B the bottom square. The strawberry in that column lies below
the plum (because there is no plum in that column above P , and the positions of strawberries
and plums coincide everywhere above the row of P ). Hence there is at least one strawberry in
the region [BS] below [PS]. Let V be the position of the uppermost strawberry in that region.

R

WV

O T

P U S

X

B
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Denote by W the square at the intersection of the row through V with the column through S
and let R be the square vertex-adjacent to W up-left. We claim that

a(X) < b(X) for all X ∈ [PR]. (2)

This is so because if X ∈ [PR] then the portion of [OX] left to column [TB] contains at least
as many plums as strawberries (the hypothesis of the problem); in the portion above the row
through P and S we have perfect balance; and in the remaining portion, i.e. rectangle [PX]
we have a plum on square P and no strawberry at all.

Now we are able to perform the required switch. Let U be the square at the intersection
of the row through P with the column through V (some of P, U,R can coincide). We move
strawberries from squares S and V to squares U and W . Then

a′(X) = a(X) + 1 for X ∈ [UR]; a′(X) = a(X) for other X.

And since the rectangle [UR] is contained in [PR], we still have a′(X) ≤ b(X) for all S, in view
of (2); conditions (1) are satisfied and the proof is complete.
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C5. An (n, k)-tournament is a contest with n players held in k rounds such that:

(i) Each player plays in each round, and every two players meet at most once.

(ii) If player A meets player B in round i, player C meets player D in round i, and player A
meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.
(Argentina)

Solution. For each k, denote by tk the unique integer such that 2tk−1 < k + 1 ≤ 2tk . We show
that an (n, k)-tournament exists if and only if 2tk divides n.

First we prove that if n = 2t for some t then there is an (n, k)-tournament for all k ≤ 2t − 1.
Let S be the set of 0−1 sequences with length t. We label the 2t players with the elements of S
in an arbitrary fashion (which is possible as there are exactly 2t sequences in S). Players are
identified with their labels in the construction below. If α, β ∈ S, let α + β ∈ S be the result
of the modulo 2 term-by-term addition of α and β (with rules 0 + 0 = 0, 0 + 1 = 1 + 0 = 1,
1 + 1 = 0; there is no carryover). For each i = 1, . . . , 2t − 1 let ω(i) ∈ S be the sequence of
base 2 digits of i, completed with leading zeros if necessary to achieve length t.

Now define a tournament with n = 2t players in k ≤ 2t − 1 rounds as follows: For all
i = 1, . . . , k, let player α meet player α + ω(i) in round i. The tournament is well-defined as
α + ω(i) ∈ S and α+ ω(i) = β + ω(i) implies α = β; also [α + ω(i)] + ω(i) = α for each α ∈ S
(meaning that player α + ω(i) meets player α in round i, as needed). Each player plays in each
round. Next, every two players meet at most once (exactly once if k = 2t − 1), since ω(i) 6= ω(j)
if i 6= j. Thus condition (i) holds true, and condition (ii) is also easy to check.

Let player α meet player β in round i, player γ meet player δ in round i, and player α meet
player γ in round j. Then β = α+ ω(i), δ = γ + ω(i) and γ = α + ω(j). By definition, β will
play in round j with

β + ω(j) = [α + ω(i)] + ω(j) = [α + ω(j)] + ω(i) = γ + ω(i) = δ,

as required by (ii).
So there exists an (n, k)-tournament for pairs (n, k) such that n = 2t and k ≤ 2t − 1. The

same conclusion is straightforward for n of the form n = 2ts and k ≤ 2t − 1. Indeed, consider
s different (2t, k)-tournaments T1, . . . , Ts, no two of them having players in common. Their
union can be regarded as a (2ts, k)-tournament T where each round is the union of the respective
rounds in T1, . . . , Ts.

In summary, the condition that 2tk divides n is sufficient for an (n, k)-tournament to exist.
We prove that it is also necessary.

Consider an arbitrary (n, k)-tournament. Represent each player by a point and after each
round, join by an edge every two players who played in this round. Thus to a round i = 1, . . . , k
there corresponds a graph Gi. We say that player Q is an i-neighbour of player P if there is a
path of edges in Gi from P to Q; in other words, if there are players P = X1, X2, . . . , Xm = Q
such that player Xj meets player Xj+1 in one of the first i rounds, j = 1, 2 . . . , m−1. The set
of i-neighbours of a player will be called its i-component. Clearly two i-components are either
disjoint or coincide.

Hence after each round i the set of players is partitioned into pairwise disjoint i-components.
So, to achieve our goal, it suffices to show that all k-components have size divisible by 2tk .

To this end, let us see how the i-component Γ of a player A changes after round i+1.
Suppose that A meets player B with i-component ∆ in round i+1 (components Γ and ∆ are
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not necessarily distinct). We claim that then in round i+1 each player from Γ meets a player
from ∆, and vice versa.

Indeed, let C be any player in Γ, and let C meet D in round i+1. Since C is an i-neighbour
of A, there is a sequence of players A = X1, X2, . . . , Xm = C such that Xj meets Xj+1 in one
of the first i rounds, j = 1, 2 . . . , m−1. Let Xj meet Yj in round i+1, for j = 1, 2 . . . , m; in
particular Y1 = B and Ym = D. Players Yj exists in view of condition (i). Suppose that Xj

and Xj+1 met in round r, where r ≤ i. Then condition (ii) implies that and Yj and Yj+1 met
in round r, too. Hence B = Y1, Y2, . . . , Ym = D is a path in Gi from B to D. This is to say, D
is in the i-component ∆ of B, as claimed. By symmetry, each player from ∆ meets a player
from Γ in round i+1. It follows in particular that Γ and ∆ have the same cardinality.

It is straightforward now that the (i+1)-component of A is Γ ∪ ∆, the union of two sets
with the same size. Since Γ and ∆ are either disjoint or coincide, we have either |Γ ∪ ∆| = 2|Γ|
or |Γ ∪ ∆| = |Γ|; as usual, |· · ·| denotes the cardinality of a finite set.

Let Γ1, . . . ,Γk be the consecutive components of a given player A. We obtained that either
|Γi+1| = 2|Γi| or |Γi+1| = |Γi| for i = 1, . . . , k−1. Because |Γ1| = 2, each |Γi| is a power of 2,
i = 1, . . . , k−1. In particular |Γk| = 2u for some u.

On the other hand, player A has played with k different opponents by (i). All of them
belong to Γk, therefore |Γk| ≥ k+1.

Thus 2u ≥ k+1, and since tk is the least integer satisfying 2tk ≥ k+1, we conclude that
u ≥ tk. So the size of each k-component is divisible by 2tk , which completes the argument.
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C6. A holey triangle is an upward equilateral triangle of side length n with n upward unit
triangular holes cut out. A diamond is a 60◦−120◦ unit rhombus. Prove that a holey triangle T
can be tiled with diamonds if and only if the following condition holds: Every upward equilateral
triangle of side length k in T contains at most k holes, for 1 ≤ k ≤ n.

(Colombia)

Solution. Let T be a holey triangle. The unit triangles in it will be called cells. We say simply
“triangle” instead of “upward equilateral triangle” and “size” instead of “side length.”

The necessity will be proven first. Assume that a holey triangle T can be tiled with diamonds
and consider such a tiling. Let T ′ be a triangle of size k in T containing h holes. Focus on the
diamonds which cover (one or two) cells in T ′. Let them form a figure R. The boundary of T ′

consists of upward cells, so R is a triangle of size k with h upward holes cut out and possibly
some downward cells sticking out. Hence there are exactly (k2 + k)/2 − h upward cells in R, and
at least (k2 − k)/2 downward cells (not counting those sticking out). On the other hand each
diamond covers one upward and one downward cell, which implies (k2 + k)/2 − h ≥ (k2 − k)/2.
It follows that h ≤ k, as needed.

We pass on to the sufficiency. For brevity, let us say that a set of holes in a given triangle T
is spread out if every triangle of size k in T contains at most k holes. For any set S of spread
out holes, a triangle of size k will be called full of S if it contains exactly k holes of S. The
proof is based on the following observation.

Lemma. Let S be a set of spread out holes in T . Suppose that two triangles T ′ and T ′′ are full
of S, and that they touch or intersect. Let T ′ +T ′′ denote the smallest triangle in T containing
them. Then T ′ + T ′′ is also full of S.

Proof. Let triangles T ′, T ′′, T ′ ∩ T ′′ and T ′ + T ′′ have sizes a, b, c and d, and let them contain
a, b, x and y holes of S, respectively. (Note that T ′∩T ′′ could be a point, in which case c = 0.)
Since S is spread out, we have x ≤ c and y ≤ d. The geometric configuration of triangles
clearly satisfies a+ b = c+ d. Furthermore, a+ b ≤ x+ y, since a+ b counts twice the holes in
T ′ ∩ T ′′. These conclusions imply x = c and y = d, as we wished to show. �

Now let Tn be a holey triangle of size n, and let the set H of its holes be spread out. We
show by induction on n that Tn can be tiled with diamonds. The base n = 1 is trivial. Suppose
that n ≥ 2 and that the claim holds for holey triangles of size less than n.

Denote by B the bottom row of Tn and by T ′ the triangle formed by its top n− 1 rows.
There is at least one hole in B as T ′ contains at most n− 1 holes. If this hole is only one,
there is a unique way to tile B with diamonds. Also, T ′ contains exactly n− 1 holes, making
it a holey triangle of size n− 1, and these holes are spread out. Hence it remains to apply the
induction hypothesis.

So suppose that there are m ≥ 2 holes in B and label them a1, . . . , am from left to right. Let
` be the line separating B from T ′. For each i = 1, . . . , m− 1, pick an upward cell bi between ai
and ai+1, with base on `. Place a diamond to cover bi and its lower neighbour, a downward
cell in B. The remaining part of B can be tiled uniquely with diamonds. Remove from Tn
row B and the cells b1, . . . , bm−1 to obtain a holey triangle Tn−1 of size n− 1. The conclusion
will follow by induction if the choice of b1, . . . , bm−1 guarantees that the following condition
is satisfied: If the holes a1, . . . , am−1 are replaced by b1, . . . , bm−1 then the new set of holes is
spread out again.

We show that such a choice is possible. The cells b1, . . . , bm−1 can be defined one at a time
in this order, making sure that the above condition holds at each step. Thus it suffices to prove
that there is an appropriate choice for b1, and we set a1 = u, a2 = v for clarity.
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Let ∆ be the triangle of maximum size which is full of H , contains the top vertex of the
hole u, and has base on line `. Call ∆ the associate of u. Observe that ∆ does not touch v.
Indeed, if ∆ has size r then it contains r holes of Tn. Extending its slanted sides downwards
produces a triangle ∆′ of size r + 1 containing at least one more hole, namely u. Since there
are at most r + 1 holes in ∆′, it cannot contain v. Consequently, ∆ does not contain the top
vertex of v.

Let w be the upward cell with base on ` which is to the right of ∆ and shares a common
vertex with it. The observation above shows that w is to the left of v. Note that w is not a
hole, or else ∆ could be extended to a larger triangle full of H .

We prove that if the hole u is replaced by w then the new set of holes is spread out again.
To verify this, we only need to check that if a triangle Γ in Tn contains w but not u then Γ is
not full of H . Suppose to the contrary that Γ is full of H . Consider the minimum triangle Γ+∆
containing Γ and the associate ∆ of u. Clearly Γ + ∆ is larger than ∆, because Γ contains w
but ∆ does not. Next, Γ + ∆ is full of H \ {u} by the lemma, since Γ and ∆ have a common
point and neither of them contains u.

u v

∆

Γ

Γ + ∆

w

If Γ is above line ` then so is Γ + ∆, which contradicts the maximum choice of ∆. If Γ
contains cells from row B, observe that Γ + ∆ contains u. Let s be the size of Γ + ∆. Being
full of H \ {u}, Γ + ∆ contains s holes other than u. But it also contains u, contradicting the
assumption that H is spread out.

The claim follows, showing that b1 = w is an appropriate choice for a1 = u and a2 = v. As
explained above, this is enough to complete the induction.
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C7. Consider a convex polyhedron without parallel edges and without an edge parallel to
any face other than the two faces adjacent to it.

Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing
through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal
pairs of midpoints of edges. Determine the difference A−B in terms of the numbers of vertices,
edges and faces.

(Japan)

Solution 1. Denote the polyhedron by Γ; let its vertices, edges and faces be V1, V2, . . . , Vn,
E1, E2, . . . , Em and F1, F2, . . . , F`, respectively. Denote by Qi the midpoint of edge Ei.

Let S be the unit sphere, the set of all unit vectors in three-dimensional space. Map the
boundary elements of Γ to some objects on S as follows.

For a face Fi, let S+(Fi) and S−(Fi) be the unit normal vectors of face Fi, pointing outwards
from Γ and inwards to Γ, respectively. These points are diametrically opposite.

For an edge Ej, with neighbouring faces Fi1 and Fi2 , take all support planes of Γ (planes
which have a common point with Γ but do not intersect it) containing edge Ej , and let S+(Ej)
be the set of their outward normal vectors. The set S+(Ej) is an arc of a great circle on S.
Arc S+(Ej) is perpendicular to edge Ej and it connects points S+(Fi1) and S+(Fi2).

Define also the set of inward normal vectors S−(Ei) which is the reflection of S+(Ei) across
the origin.

For a vertex Vk, which is the common endpoint of edges Ej1, . . . , Ejh and shared by faces
Fi1 , . . . , Fih, take all support planes of Γ through point Vk and let S+(Vk) be the set of their out-
ward normal vectors. This is a region on S, a spherical polygon with vertices S+(Fi1), . . . , S

+(Fih)
bounded by arcs S+(Ej1), . . . , S

+(Ejh). Let S−(Vk) be the reflection of S+(Vk), the set of inward
normal vectors.

Note that region S+(Vk) is convex in the sense that it is the intersection of several half
spheres.

SΓ

Vk

Fi

Ej

S+(Vk)

S+(Fi) S+(Ej)

Now translate the conditions on Γ to the language of these objects.
(a) Polyhedron Γ has no parallel edges — the great circles of arcs S+(Ei) and S−(Ej) are

different for all i 6= j.
(b) If an edge Ei does not belong to a face Fj then they are not parallel — the great circle

which contains arcs S+(Ei) and S−(Ei) does not pass through points S+(Fj) and S−(Fj).
(c) Polyhedron Γ has no parallel faces — points S+(Fi) and S−(Fj) are pairwise distinct.
The regions S+(Vk), arcs S+(Ej) and points S+(Fi) provide a decomposition of the surface

of the sphere. Regions S−(Vk), arcs S−(Ej) and points S−(Fi) provide the reflection of this
decomposition. These decompositions are closely related to the problem.
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Lemma 1. For any 1 ≤ i, j ≤ n, regions S−(Vi) and S+(Vj) overlap if and only if vertices Vi
and Vj are antipodal.

Lemma 2. For any 1 ≤ i, j ≤ m, arcs S−(Ei) and S+(Ej) intersect if and only if the midpoints
Qi and Qj of edges Ei and Ej are antipodal.

Proof of lemma 1. First note that by properties (a,b,c) above, the two regions cannot share
only a single point or an arc. They are either disjoint or they overlap.

Assume that the two regions have a common interior point u. Let P1 and P2 be two parallel
support planes of Γ through points Vi and Vj , respectively, with normal vector u. By the
definition of regions S−(Vi) and S+(Vj), u is the inward normal vector of P1 and the outward
normal vector of P2. Therefore polyhedron Γ lies between the two planes; vertices Vi and Vj
are antipodal.

To prove the opposite direction, assume that Vi and Vj are antipodal. Then there exist two
parallel support planes P1 and P2 through Vi and Vj , respectively, such that Γ is between them.
Let u be the inward normal vector of P1; then u is the outward normal vector of P2, therefore
u ∈ S−(Vi) ∩ S+(Vj). The two regions have a common point, so they overlap. �

Proof of lemma 2. Again, by properties (a,b) above, the endpoints of arc S−(Ei) cannot belong
to S+(Ej) and vice versa. The two arcs are either disjoint or intersecting.

Assume that arcs S−(Ei) and S+(Ej) intersect at point u. Let P1 and P2 be the two
support planes through edges Ei and Ej , respectively, with normal vector u. By the definition
of arcs S−(Ei) and S+(Ej), vector u points inwards from P1 and outwards from P2. Therefore
Γ is between the planes. Since planes P1 and P2 pass through Qi and Qj, these points are
antipodal.

For the opposite direction, assume that points Qi and Qj are antipodal. Let P1 and P2

be two support planes through these points, respectively. An edge cannot intersect a support
plane, therefore Ei and Ej lie in the planes P1 and P2, respectively. Let u be the inward normal
vector of P1, which is also the outward normal vector of P2. Then u ∈ S−(Ei) ∩ S+(Ej). So
the two arcs are not disjoint; they therefore intersect. �

Now create a new decomposition of sphere S. Draw all arcs S+(Ei) and S−(Ej) on sphere S
and put a knot at each point where two arcs meet. We have ` knots at points S+(Fi) and
another ` knots at points S−(Fi), corresponding to the faces of Γ; by property (c) they are
different. We also have some pairs 1 ≤ i, j ≤ m where arcs S−(Ei) and S+(Ej) intersect. By
Lemma 2, each antipodal pair (Qi, Qj) gives rise to two such intersections; hence, the number
of all intersections is 2B and we have 2`+ 2B knots in all.

Each intersection knot splits two arcs, increasing the number of arcs by 2. Since we started
with 2m arcs, corresponding the edges of Γ, the number of the resulting curve segments is
2m+ 4B.

The network of these curve segments divides the sphere into some “new” regions. Each new
region is the intersection of some overlapping sets S−(Vi) and S+(Vj). Due to the convexity,
the intersection of two overlapping regions is convex and thus contiguous. By Lemma 1, each
pair of overlapping regions corresponds to an antipodal vertex pair and each antipodal vertex
pair gives rise to two different overlaps, which are symmetric with respect to the origin. So the
number of new regions is 2A.

The result now follows from Euler’s polyhedron theorem. We have n+ l = m+ 2 and

(2`+ 2B) + 2A = (2m+ 4B) + 2,

therefore
A− B = m− ` + 1 = n− 1.

Therefore A−B is by one less than the number of vertices of Γ.
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Solution 2. Use the same notations for the polyhedron and its vertices, edges and faces as
in Solution 1. We regard points as vectors starting from the origin. Polyhedron Γ is regarded
as a closed convex set, including its interior. In some cases the edges and faces of Γ are also
regarded as sets of points. The symbol ∂ denotes the boundary of the certain set; e.g. ∂Γ is
the surface of Γ.

Let ∆ = Γ − Γ = {U − V : U, V ∈ Γ} be the set of vectors between arbitrary points of
Γ. Then ∆, being the sum of two bounded convex sets, is also a bounded convex set and, by
construction, it is also centrally symmetric with respect to the origin. We will prove that ∆ is
also a polyhedron and express the numbers of its faces, edges and vertices in terms n, m, `, A
and B.

Lemma 1. For points U, V ∈ Γ, point W = U − V is a boundary point of ∆ if and only if U
and V are antipodal. Moreover, for each boundary point W ∈ ∂∆ there exists exactly one pair
of points U, V ∈ Γ such that W = U − V .

Proof. Assume first that U and V are antipodal points of Γ. Let parallel support planes
P1 and P2 pass through them such that Γ is in between. Consider plane P = P1 − U =
P2 − V . This plane separates the interiors of Γ − U and Γ − V . After reflecting one of the
sets, e.g. Γ − V , the sets Γ − U and −Γ + V lie in the same half space bounded by P . Then
(Γ − U) + (−Γ + V ) = ∆ −W lies in that half space, so 0 ∈ P is a boundary point of the set
∆ −W . Translating by W we obtain that W is a boundary point of ∆.

To prove the opposite direction, let W = U − V be a boundary point of ∆, and let Ψ =
(Γ−U)∩ (Γ− V ). We claim that Ψ = {0}. Clearly Ψ is a bounded convex set and 0 ∈ Ψ. For
any two points X, Y ∈ Ψ, we have U+X, V +Y ∈ Γ and W+(X−Y ) = (U+X)−(V +Y ) ∈ ∆.
Since W is a boundary point of ∆, the vector X−Y cannot have the same direction as W . This
implies that the interior of Ψ is empty. Now suppose that Ψ contains a line segment S. Then
S+U and S+V are subsets of some faces or edges of Γ and these faces/edges are parallel to S.
In all cases, we find two faces, two edges, or a face and an edge which are parallel, contradicting
the conditions of the problem. Therefore, Ψ = {0} indeed.

Since Ψ = (Γ−U)∩(Γ−V ) consists of a single point, the interiors of bodies Γ−U and Γ−V
are disjoint and there exists a plane P which separates them. Let u be the normal vector of P
pointing into that half space bounded by P which contains Γ − U . Consider the planes P + U
and P + V ; they are support planes of Γ, passing through U and V , respectively. From plane
P + U , the vector u points into that half space which contains Γ. From plane P + V , vector
u points into the opposite half space containing Γ. Therefore, we found two proper support
through points U and V such that Γ is in between.

For the uniqueness part, assume that there exist points U1, V1 ∈ Γ such that U1−V1 = U−V .
The points U1 − U and V1 − V lie in the sets Γ − U and Γ − V separated by P . Since
U1−U = V1−V , this can happen only if both are in P ; but the only such point is 0. Therefore,
U1 − V1 = U − V implies U1 = U and V1 = V . The lemma is complete. �

Lemma 2. Let U and V be two antipodal points and assume that plane P , passing through
0, separates the interiors of Γ − U and Γ − V . Let Ψ1 = (Γ − U) ∩ P and Ψ2 = (Γ − V ) ∩ P .
Then ∆ ∩ (P + U − V ) = Ψ1 − Ψ2 + U − V .

Proof. The sets Γ−U and −Γ + V lie in the same closed half space bounded by P . Therefore,
for any points X ∈ (Γ − U) and Y ∈ (−Γ + V ), we have X + Y ∈ P if and only if X, Y ∈ P .
Then

(∆− (U −V ))∩P =
(
(Γ−U)+ (−Γ+V )

)
∩P =

(
(Γ−U)∩P

)
+
(
(−Γ+V )∩P

)
= Ψ1 −Ψ2.

Now a translation by (U − V ) completes the lemma. �
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Now classify the boundary points W = U − V of ∆, according to the types of points U and
V . In all cases we choose a plane P through 0 which separates the interiors of Γ−U and Γ−V .
We will use the notation Ψ1 = (Γ − U) ∩ P and Ψ2 = (Γ − V ) ∩ P as well.

Case 1: Both U and V are vertices of Γ. Bodies Γ − U and Γ − V have a common vertex
which is 0. Choose plane P in such a way that Ψ1 = Ψ2 = {0}. Then Lemma 2 yields
∆ ∩ (P +W ) = {W}. Therefore P +W is a support plane of ∆ such that they have only one
common point so no line segment exists on ∂∆ which would contain W in its interior.

Since this case occurs for antipodal vertex pairs and each pair is counted twice, the number
of such boundary points on ∆ is 2A.

Case 2: Point U is an interior point of an edge Ei and V is a vertex of Γ. Choose plane
P such that Ψ1 = Ei − U and Ψ2 = {0}. By Lemma 2, ∆ ∩ (P +W ) = Ei − V . Hence there
exists a line segment in ∂∆ which contains W in its interior, but there is no planar region in
∂∆ with the same property.

We obtain a similar result if V belongs to an edge of Γ and U is a vertex.
Case 3: Points U and V are interior points of edges Ei and Ej , respectively. Let P be the

plane of Ei − U and Ej − V . Then Ψ1 = Ei − U , Ψ2 = Ej − V and ∆ ∩ (P +W ) = Ei − Ej .
Therefore point W belongs to a parallelogram face on ∂∆.

The centre of the parallelogram is Qi−Qj , the vector between the midpoints. Therefore an
edge pair (Ei, Ej) occurs if and only if Qi and Qj are antipodal which happens 2B times.

Case 4: Point U lies in the interior of a face Fi and V is a vertex of Γ. The only choice for
P is the plane of Fi − U . Then we have Ψ1 = Fi − U , Ψ2 = {0} and ∆ ∩ (P +W ) = Fi − V .
This is a planar face of ∂∆ which is congruent to Fi.

For each face Fi, the only possible vertex V is the farthest one from the plane of Fi.
If U is a vertex and V belongs to face Fi then we obtain the same way that W belongs to

a face −Fi + U which is also congruent to Fi. Therefore, each face of Γ has two copies on ∂∆,
a translated and a reflected copy.

Case 5: Point U belongs to a face Fi of Γ and point V belongs to an edge or a face G. In
this case objects Fi and G must be parallel which is not allowed.

P P P P

Γ − UΓ − UΓ − UΓ − U

Γ − VΓ − VΓ − V Γ − V

case 1 case 2 case 3 case 4

0000

Now all points in ∂∆ belong to some planar polygons (cases 3 and 4), finitely many line
segments (case 2) and points (case 1). Therefore ∆ is indeed a polyhedron. Now compute the
numbers of its vertices, edges and faces.

The vertices are obtained in case 1, their number is 2A.
Faces are obtained in cases 3 and 4. Case 3 generates 2B parallelogram faces. Case 4

generates 2` faces.
We compute the number of edges of ∆ from the degrees (number of sides) of faces of Γ. Let

di be the the degree of face Fi. The sum of degrees is twice as much as the number of edges, so
d1+d2+. . .+dl = 2m. The sum of degrees of faces of ∆ is 2B ·4+2(d1+d2+· · ·+dl) = 8B+4m,
so the number of edges on ∆ is 4B + 2m.

Applying Euler’s polyhedron theorem on Γ and ∆, we have n+l = m+2 and 2A+(2B+2`) =
(4B + 2m) + 2. Then the conclusion follows:

A− B = m− ` + 1 = n− 1.
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G1. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P coincides with I.
(Korea)

Solution. Let ∠A = α, ∠B = β, ∠C = γ. Since ∠PBA+ ∠PCA+ ∠PBC + ∠PCB = β + γ,
the condition from the problem statement is equivalent to ∠PBC + ∠PCB = (β + γ)/2, i. e.
∠BPC = 90◦ + α/2.

On the other hand ∠BIC = 180◦ − (β + γ)/2 = 90◦ + α/2. Hence ∠BPC = ∠BIC, and
since P and I are on the same side of BC, the points B, C, I and P are concyclic. In other
words, P lies on the circumcircle ω of triangle BCI.

A

I

P

B

C

M

ω

Ω

Let Ω be the circumcircle of triangle ABC. It is a well-known fact that the centre of ω
is the midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI
intersects Ω.

From triangle APM we have

AP + PM ≥ AM = AI + IM = AI + PM.

Therefore AP ≥ AI. Equality holds if and only if P lies on the line segment AI, which occurs
if and only if P = I.
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G2. Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the
line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are
points P and Q on the line segment KL satisfying

∠APB = ∠BCD and ∠CQD = ∠ABC.

Prove that the points P , Q, B and C are concyclic.
(Ukraine)

Solution 1. Because AB ‖ CD, the relation AK/KB = DL/LC readily implies that the lines
AD, BC and KL have a common point S.

X

A K B

Q

P

D L C

S

Y

Consider the second intersection points X and Y of the line SK with the circles (ABP )
and (CDQ), respectively. Since APBX is a cyclic quadrilateral and AB ‖ CD, one has

∠AXB = 180◦ − ∠APB = 180◦ − ∠BCD = ∠ABC.

This shows that BC is tangent to the circle (ABP ) at B. Likewise, BC is tangent to the
circle (CDQ) at C. Therefore SP · SX = SB2 and SQ · SY = SC2.

Let h be the homothety with centre S and ratio SC/SB. Since h(B) = C, the above
conclusion about tangency implies that h takes circle (ABP ) to circle (CDQ). Also, h takes AB
to CD, and it easily follows that h(P ) = Y , h(X) = Q, yielding SP/SY = SB/SC = SX/SQ.

Equalities SP · SX = SB2 and SQ/SX = SC/SB imply SP · SQ = SB · SC, which is
equivalent to P , Q, B and C being concyclic.
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Solution 2. The case where P = Q is trivial. Thus assume that P and Q are two distinct
points. As in the first solution, notice that the lines AD, BC and KL concur at a point S.

A

C

S

B

D L

K

Q

P

E F

Let the lines AP and DQ meet at E, and let BP and CQ meet at F . Then ∠EPF = ∠BCD
and ∠FQE = ∠ABC by the condition of the problem. Since the angles BCD and ABC add
up to 180◦, it follows that PEQF is a cyclic quadrilateral.

Applying Menelaus’ theorem, first to triangle ASP and line DQ and then to triangle BSP
and line CQ, we have

AD

DS
· SQ
QP

· PE
EA

= 1 and
BC

CS
· SQ
QP

· PF
FB

= 1.

The first factors in these equations are equal, as AB‖CD. Thus the last factors are also equal,
which implies that EF is parallel to AB and CD. Using this and the cyclicity of PEQF , we
obtain

∠BCD = ∠BCF + ∠FCD = ∠BCQ+ ∠EFQ = ∠BCQ+ ∠EPQ.

On the other hand,

∠BCD = ∠APB = ∠EPF = ∠EPQ+ ∠QPF,

and consequently ∠BCQ = ∠QPF . The latter angle either coincides with ∠QPB or is sup-
plementary to ∠QPB, depending on whether Q lies between K and P or not. In either case it
follows that P , Q, B and C are concyclic.
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G3. Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

The diagonals BD and CE meet at P . Prove that the line AP bisects the side CD.
(USA)

Solution. Let the diagonals AC and BD meet at Q, the diagonals AD and CE meet at R,
and let the ray AP meet the side CD at M . We want to prove that CM = MD holds.

A

B Q

P

M

C

D

E

R

The idea is to show that Q and R divide AC and AD in the same ratio, or more precisely

AQ

QC
=
AR

RD
(1)

(which is equivalent to QR‖CD). The given angle equalities imply that the triangles ABC,
ACD and ADE are similar. We therefore have

AB

AC
=
AC

AD
=
AD

AE
.

Since ∠BAD = ∠BAC + ∠CAD = ∠CAD + ∠DAE = ∠CAE, it follows from AB/AC =
AD/AE that the triangles ABD and ACE are also similar. Their angle bisectors in A are AQ
and AR, respectively, so that

AB

AC
=
AQ

AR
.

Because AB/AC = AC/AD, we obtain AQ/AR = AC/AD, which is equivalent to (1). Now
Ceva’s theorem for the triangle ACD yields

AQ

QC
· CM
MD

· DR
RA

= 1.

In view of (1), this reduces to CM = MD, which completes the proof.

Comment. Relation (1) immediately follows from the fact that quadrilaterals ABCD and ACDE
are similar.
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G4. A point D is chosen on the side AC of a triangle ABC with ∠C < ∠A < 90◦ in such
a way that BD = BA. The incircle of ABC is tangent to AB and AC at points K and L,
respectively. Let J be the incentre of triangle BCD. Prove that the line KL intersects the line
segment AJ at its midpoint.

(Russia)

Solution. Denote by P be the common point of AJ and KL. Let the parallel to KL through
J meet AC at M . Then P is the midpoint of AJ if and only if AM = 2 · AL, which we are
about to show.

P
J

K

B

C DTM L A

Denoting ∠BAC = 2α, the equalities BA = BD and AK = AL imply ∠ADB = 2α and
∠ALK = 90◦−α. Since DJ bisects ∠BDC, we obtain ∠CDJ = 1

2
· (180◦−∠ADB) = 90◦−α.

Also ∠DMJ = ∠ALK = 90◦ − α since JM‖KL. It follows that JD = JM .
Let the incircle of triangle BCD touch its side CD at T . Then JT ⊥ CD, meaning that JT

is the altitude to the base DM of the isosceles triangle DMJ . It now follows that DT = MT ,
and we have

DM = 2 ·DT = BD + CD − BC.

Therefore

AM = AD + (BD + CD − BC)

= AD + AB +DC −BC

= AC + AB − BC

= 2 · AL,

which completes the proof.
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G5. In triangle ABC, let J be the centre of the excircle tangent to side BC at A1 and to
the extensions of sides AC and AB at B1 and C1, respectively. Suppose that the lines A1B1

and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C1

to line DJ . Determine the angles ∠BEA1 and ∠AEB1.
(Greece)

Solution 1. Let K be the intersection point of lines JC and A1B1. Obviously JC ⊥ A1B1 and
since A1B1 ⊥ AB, the lines JK and C1D are parallel and equal. From the right triangle B1CJ
we obtain JC2

1 = JB2
1 = JC · JK = JC · C1D from which we infer that DC1/C1J = C1J/JC

and the right triangles DC1J and C1JC are similar. Hence ∠C1DJ = ∠JC1C, which implies
that the lines DJ and C1C are perpendicular, i.e. the points C1, E, C are collinear.

C

A BD C1

J

E

K

B1

A1

Since ∠CA1J = ∠CB1J = ∠CEJ = 90◦, points A1, B1 and E lie on the circle of diameter
CJ . Then ∠DBA1 = ∠A1CJ = ∠DEA1, which implies that quadrilateral BEA1D is cyclic;
therefore ∠A1EB = 90◦.

Quadrilateral ADEB1 is also cyclic because ∠EB1A = ∠EJC = ∠EDC1, therefore we
obtain ∠AEB1 = ∠ADB = 90◦.

C
J

E

A C1B

A1

D

B1

ω1

ω2

ω3
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Solution 2. Consider the circles ω1, ω2 and ω3 of diameters C1D, A1B and AB1, respectively.
Line segments JC1, JB1 and JA1 are tangents to those circles and, due to the right angle at D,
ω2 and ω3 pass through point D. Since ∠C1ED is a right angle, point E lies on circle ω1,
therefore

JC2
1 = JD · JE.

Since JA1 = JB1 = JC1 are all radii of the excircle, we also have

JA2
1 = JD · JE and JB2

1 = JD · JE.
These equalities show that E lies on circles ω2 and ω3 as well, so ∠BEA1 = ∠AEB1 = 90◦.

Solution 3. First note that A1B1 is perpendicular to the external angle bisector CJ of ∠BCA
and parallel to the internal angle bisector of that angle. Therefore, A1B1 is perpendicular to
AB if and only if triangle ABC is isosceles, AC = BC. In that case the external bisector CJ
is parallel to AB.

Triangles ABC and B1A1J are similar, as their corresponding sides are perpendicular. In
particular, we have ∠DA1J = ∠C1BA1; moreover, from cyclic deltoid JA1BC1,

∠C1A1J = ∠C1BJ =
1

2
∠C1BA1 =

1

2
∠DA1J.

Therefore, A1C1 bisects angle ∠DA1J .

A B C1

A1

B1

J

O = E

D

C

ω

In triangle B1A1J , line JC1 is the external bisector at vertex J . The point C1 is the
intersection of two external angle bisectors (at A1 and J) so C1 is the centre of the excircle ω,
tangent to side A1J , and to the extension of B1A1 at point D.

Now consider the similarity transform ϕ which moves B1 to A, A1 to B and J to C. This
similarity can be decomposed into a rotation by 90◦ around a certain point O and a homothety
from the same centre. This similarity moves point C1 (the centre of excircle ω) to J and moves
D (the point of tangency) to C1.

Since the rotation angle is 90◦, we have ∠XOϕ(X) = 90◦ for an arbitrary point X 6= O.
For X = D and X = C1 we obtain ∠DOC1 = ∠C1OJ = 90◦. Therefore O lies on line segment
DJ and C1O is perpendicular to DJ . This means that O = E.

For X = A1 and X = B1 we obtain ∠A1OB = ∠B1OA = 90◦, i.e.

∠BEA1 = ∠AEB1 = 90◦.

Comment. Choosing X = J , it also follows that ∠JEC = 90◦ which proves that lines DJ and CC1

intersect at point E. However, this is true more generally, without the assumption that A1B1 and
AB are perpendicular, because points C and D are conjugates with respect to the excircle. The last
observation could replace the first paragraph of Solution 1.



42

G6. Circles ω1 and ω2 with centres O1 and O2 are externally tangent at point D and
internally tangent to a circle ω at points E and F , respectively. Line t is the common tangent
of ω1 and ω2 at D. Let AB be the diameter of ω perpendicular to t, so that A, E and O1 are
on the same side of t. Prove that lines AO1, BO2, EF and t are concurrent.

(Brasil)

Solution 1. Point E is the centre of a homothety h which takes circle ω1 to circle ω. The
radii O1D and OB of these circles are parallel as both are perpendicular to line t. Also, O1D
and OB are on the same side of line EO, hence h takes O1D to OB. Consequently, points E,
D and B are collinear. Likewise, points F , D and A are collinear as well.

Let lines AE and BF intersect at C. Since AF and BE are altitudes in triangle ABC, their
common point D is the orthocentre of this triangle. So CD is perpendicular to AB, implying
that C lies on line t. Note that triangle ABC is acute-angled. We mention the well-known fact
that triangles FEC and ABC are similar in ratio cos γ, where γ = ∠ACB. In addition, points
C, E, D and F lie on the circle with diameter CD.

A

U L

V K B

E

F

t

N
O1

O2

P

ω2

D

O

C

ω1

γ

Ω

ω

Let P be the common point of lines EF and t. We are going to prove that P lies on
line AO1. Denote by N the second common point of circle ω1 and AC; this is the point of ω1

diametrically opposite to D. By Menelaus’ theorem for triangle DCN , points A, O1 and P are
collinear if and only if

CA

AN
· NO1

O1D
· DP
PC

= 1.

Because NO1 = O1D, this reduces to CA/AN = CP/PD. Let line t meet AB at K. Then
CA/AN = CK/KD, so it suffices to show that

CP

PD
=
CK

KD
. (1)

To verify (1), consider the circumcircle Ω of triangle ABC. Draw its diameter CU through C,
and let CU meet AB at V . Extend CK to meet Ω at L. Since AB is parallel to UL, we have
∠ACU = ∠BCL. On the other hand ∠EFC = ∠BAC, ∠FEC = ∠ABC and EF/AB = cos γ,
as stated above. So reflection in the bisector of ∠ACB followed by a homothety with centre C
and ratio 1/ cos γ takes triangle FEC to triangle ABC. Consequently, this transformation
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takes CD to CU , which implies CP/PD = CV/V U . Next, we have KL = KD, because D
is the orthocentre of triangle ABC. Hence CK/KD = CK/KL. Finally, CV/V U = CK/KL
because AB is parallel to UL. Relation (1) follows, proving that P lies on line AO1. By
symmetry, P also lies on line AO2 which completes the solution.

Solution 2. We proceed as in the first solution to define a triangle ABC with orthocentre D,
in which AF and BE are altitudes.

Denote by M the midpoint of CD. The quadrilateral CEDF is inscribed in a circle with
centre M , hence MC = ME = MD = MF .

A O B

F

O2

t

E

C

M

Q

O1

D

ω2

ω1

Consider triangles ABC and O1O2M . Lines O1O2 and AB are parallel, both of them being
perpendicular to line t. Next, MO1 is the line of centres of circles (CEF ) and ω1 whose common
chord is DE. Hence MO1 bisects ∠DME which is the external angle at M in the isosceles
triangle CEM . It follows that ∠DMO1 = ∠DCA, so that MO1 is parallel to AC. Likewise,
MO2 is parallel to BC.

Thus the respective sides of triangles ABC and O1O2M are parallel; in addition, these
triangles are not congruent. Hence there is a homothety taking ABC toO1O2M . The lines AO1,
BO2 and CM = t are concurrent at the centre Q of this homothety.

Finally, apply Pappus’ theorem to the triples of collinear points A, O, B and O2, D, O1.
The theorem implies that the points AD ∩ OO2 = F , AO1 ∩BO2 = Q and OO1 ∩BD = E are
collinear. In other words, line EF passes through the common point Q of AO1, BO2 and t.

Comment. Relation (1) from Solution 1 expresses the well-known fact that points P and K are
harmonic conjugates with respect to points C and D. It is also easy to justify it by direct computation.
Denoting ∠CAB = α, ∠ABC = β, it is straightforward to obtain CP/PD = CK/KD = tanα tan β.
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G7. In a triangle ABC, let Ma,Mb,Mc be respectively the midpoints of the sides BC, CA,
AB and Ta, Tb, Tc be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not
containing the opposite vertices. For i ∈ {a, b, c}, let ωi be the circle with MiTi as diameter.
Let pi be the common external tangent to ωj, ωk ({i, j, k} = {a, b, c}) such that ωi lies on the
opposite side of pi than ωj , ωk do. Prove that the lines pa, pb, pc form a triangle similar to ABC
and find the ratio of similitude.

(Slovakia)

Solution. Let TaTb intersect circle ωb at Tb and U , and let TaTc intersect circle ωc at Tc and V .
Further, let UX be the tangent to ωb at U , with X on AC, and let V Y be the tangent to ωc
at V , with Y on AB. The homothety with centre Tb and ratio TbTa/TbU maps the circle ωb
onto the circumcircle of ABC and the line UX onto the line tangent to the circumcircle at Ta,
which is parallel to BC; thus UX‖BC . The same is true of V Y , so that UX‖BC‖V Y .

Let TaTb cut AC at P and let TaTc cut AB at Q. The point X lies on the hypotenuse PMb

of the right triangle PUMb and is equidistant from U and Mb. So X is the midpoint of MbP .
Similarly Y is the midpoint of McQ.

Denote the incentre of triangle ABC as usual by I. It is a known fact that TaI = TaB
and TcI = TcB. Therefore the points B and I are symmetric across TaTc, and consequently
∠QIB = ∠QBI = ∠IBC. This implies that BC is parallel to the line IQ, and likewise, to IP .
In other words, PQ is the line parallel to BC passing through I.

A

Tb

CB

Y

Ma

X

Ta

Q

V

Tc

ωc

Mc Mb

P
I

U

ωa

ωb

Clearly MbMc‖BC. So PMbMcQ is a trapezoid and the segment XY connects the midpoints
of its nonparallel sides; hence XY ‖BC. This combined with the previously established relations
UX‖BC‖V Y shows that all the four points U,X, Y, V lie on a line which is the common tangent
to circles ωb, ωc. Since it leaves these two circles on one side and the circle ωa on the other,
this line is just the line pa from the problem statement.

Line pa runs midway between I and MbMc. Analogous conclusions hold for the lines pb
and pc. So these three lines form a triangle homothetic from centre I to triangle MaMbMc in
ratio 1/2, hence similar to ABC in ratio 1/4.
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G8. Let ABCD be a convex quadrilateral. A circle passing through the points A and D
and a circle passing through the points B and C are externally tangent at a point P inside the
quadrilateral. Suppose that

∠PAB + ∠PDC ≤ 90◦ and ∠PBA+ ∠PCD ≤ 90◦.

Prove that AB + CD ≥ BC + AD.
(Poland)

Solution. We start with a preliminary observation. Let T be a point inside the quadrilateral
ABCD. Then:

Circles (BCT ) and (DAT ) are tangent at T
if and only if ∠ADT + ∠BCT = ∠ATB. (1)

Indeed, if the two circles touch each other then their common tangent at T intersects the
segment AB at a point Z, and so ∠ADT = ∠ATZ, ∠BCT = ∠BTZ, by the tangent-chord
theorem. Thus ∠ADT + ∠BCT = ∠ATZ + ∠BTZ = ∠ATB.

And conversely, if ∠ADT + ∠BCT = ∠ATB then one can draw from T a ray TZ with Z
on AB so that ∠ADT = ∠ATZ, ∠BCT = ∠BTZ. The first of these equalities implies that
TZ is tangent to the circle (DAT ); by the second equality, TZ is tangent to the circle (BCT ),
so the two circles are tangent at T .

Z

B

C

T

A

D

So the equivalence (1) is settled. It will be used later on. Now pass to the actual solution.
Its key idea is to introduce the circumcircles of triangles ABP and CDP and to consider their
second intersection Q (assume for the moment that they indeed meet at two distinct points P
and Q).

Since the point A lies outside the circle (BCP ), we have ∠BCP + ∠BAP < 180◦. Therefore
the point C lies outside the circle (ABP ). Analogously, D also lies outside that circle. It follows
that P and Q lie on the same arc CD of the circle (BCP ).

D

A

B

P

C

Q
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By symmetry, P and Q lie on the same arc AB of the circle (ABP ). Thus the point Q lies
either inside the angle BPC or inside the angle APD. Without loss of generality assume that
Q lies inside the angle BPC. Then

∠AQD = ∠PQA+ ∠PQD = ∠PBA+ ∠PCD ≤ 90◦, (2)

by the condition of the problem.
In the cyclic quadrilaterals APQB and DPQC, the angles at vertices A and D are acute.

So their angles at Q are obtuse. This implies that Q lies not only inside the angle BPC but in
fact inside the triangle BPC, hence also inside the quadrilateral ABCD.

Now an argument similar to that used in deriving (2) shows that

∠BQC = ∠PAB + ∠PDC ≤ 90◦. (3)

Moreover, since ∠PCQ = ∠PDQ, we get

∠ADQ+ ∠BCQ = ∠ADP + ∠PDQ+ ∠BCP − ∠PCQ = ∠ADP + ∠BCP.

The last sum is equal to ∠APB, according to the observation (1) applied to T = P . And
because ∠APB = ∠AQB, we obtain

∠ADQ+ ∠BCQ = ∠AQB.

Applying now (1) to T = Q we conclude that the circles (BCQ) and (DAQ) are externally
tangent at Q. (We have assumed P 6= Q; but if P = Q then the last conclusion holds trivially.)

Finally consider the halfdiscs with diameters BC and DA constructed inwardly to the
quadrilateral ABCD. They have centres at M and N , the midpoints of BC and DA re-
spectively. In view of (2) and (3), these two halfdiscs lie entirely inside the circles (BQC)
and (AQD); and since these circles are tangent, the two halfdiscs cannot overlap. Hence
MN ≥ 1

2
BC + 1

2
DA.

On the other hand, since
−−→
MN = 1

2
(
−→
BA +

−−→
CD ), we have MN ≤ 1

2
(AB + CD). Thus indeed

AB + CD ≥ BC +DA, as claimed.
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G9. Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC, respectively.
The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle of triangle
ABC again at points A2, B2, C2, respectively (A2 6= A, B2 6= B, C2 6= C). Points A3, B3, C3 are
symmetric to A1, B1, C1 with respect to the midpoints of the sides BC, CA, AB respectively.
Prove that the triangles A2B2C2 and A3B3C3 are similar.

(Russia)

Solution. We will work with oriented angles between lines. For two straight lines `,m in the
plane, ∠(`,m) denotes the angle of counterclockwise rotation which transforms line ` into a
line parallel to m (the choice of the rotation centre is irrelevant). This is a signed quantity;
values differing by a multiple of π are identified, so that

∠(`,m) = −∠(m, `), ∠(`,m) + ∠(m,n) = ∠(`, n).

If ` is the line through points K,L and m is the line through M,N , one writes ∠(KL,MN)
for ∠(`,m); the characters K,L are freely interchangeable; and so are M,N .

The counterpart of the classical theorem about cyclic quadrilaterals is the following:
If K,L,M,N are four noncollinear points in the plane then

K,L,M,N are concyclic if and only if ∠(KM,LM) = ∠(KN,LN). (1)

Passing to the solution proper, we first show that the three circles (AB1C1), (BC1A1),
(CA1B1) have a common point. So, let (AB1C1) and (BC1A1) intersect at the points C1

and P . Then by (1)

∠(PA1, CA1) = ∠(PA1, BA1) = ∠(PC1, BC1)

= ∠(PC1, AC1) = ∠(PB1, AB1) = ∠(PB1, CB1).

Denote this angle by ϕ.
The equality between the outer terms shows, again by (1), that the points A1, B1, P, C are

concyclic. Thus P is the common point of the three mentioned circles.
From now on the basic property (1) will be used without explicit reference. We have

ϕ = ∠(PA1, BC) = ∠(PB1, CA) = ∠(PC1, AB). (2)
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Let lines A2P , B2P , C2P meet the circle (ABC) again at A4, B4, C4, respectively. As

∠(A4A2, AA2) = ∠(PA2, AA2) = ∠(PC1, AC1) = ∠(PC1, AB) = ϕ,

we see that line A2A is the image of line A2A4 under rotation about A2 by the angle ϕ. Hence
the point A is the image of A4 under rotation by 2ϕ about O, the centre of (ABC). The same
rotation sends B4 to B and C4 to C. Triangle ABC is the image of A4B4C4 in this map. Thus

∠(A4B4, AB) = ∠(B4C4, BC) = ∠(C4A4, CA) = 2ϕ. (3)

Since the rotation by 2ϕ about O takes B4 to B, we have ∠(AB4, AB) = ϕ. Hence by (2)

∠(AB4, PC1) = ∠(AB4, AB) + ∠(AB,PC1) = ϕ+ (−ϕ) = 0,

which means that AB4‖PC1.

C

A

B

A4

B4

C4

2ϕ

C3

A3

ϕ

A5C1 ϕ
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C5
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ϕ
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O
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P
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A4

ϕ

B5

ϕ

A5

C5

C4

Let C5 be the intersection of lines PC1 and A4B4; define A5, B5 analogously. So AB4‖C1C5

and, by (3) and (2),

∠(A4B4, PC1) = ∠(A4B4, AB) + ∠(AB,PC1) = 2ϕ+ (−ϕ) = ϕ; (4)

i.e., ∠(B4C5, C5C1) = ϕ. This combined with ∠(C5C1, C1A) = ∠(PC1, AB) = ϕ (see (2)) proves
that the quadrilateral AB4C5C1 is an isosceles trapezoid with AC1 = B4C5.

Interchanging the roles of A and B we infer that also BC1 = A4C5. And since AC1 +BC1 =
AB = A4B4, it follows that the point C5 lies on the line segment A4B4 and partitions it into
segments A4C5, B4C5 of lengths BC1 (= AC3) and AC1 (= BC3). In other words, the rotation
which maps triangle A4B4C4 onto ABC carries C5 onto C3. Likewise, it sends A5 to A3 and
B5 to B3. So the triangles A3B3C3 and A5B5C5 are congruent. It now suffices to show that the
latter is similar to A2B2C2.

Lines B4C5 and PC5 coincide respectively with A4B4 and PC1. Thus by (4)

∠(B4C5, PC5) = ϕ.

Analogously (by cyclic shift) ϕ = ∠(C4A5, PA5), which rewrites as

ϕ = ∠(B4A5, PA5).
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These relations imply that the points P,B4, C5, A5 are concyclic. Analogously, P,C4, A5, B5

and P,A4, B5, C5 are concyclic quadruples. Therefore

∠(A5B5, C5B5) = ∠(A5B5, PB5) + ∠(PB5, C5B5) = ∠(A5C4, PC4) + ∠(PA4, C5A4). (5)

On the other hand, since the points A2, B2, C2, A4, B4, C4 all lie on the circle (ABC), we have

∠(A2B2, C2B2) = ∠(A2B2, B4B2) + ∠(B4B2, C2B2) = ∠(A2A4, B4A4) + ∠(B4C4, C2C4). (6)

But the lines A2A4, B4A4, B4C4, C2C4 coincide respectively with PA4, C5A4, A5C4, PC4.
So the sums on the right-hand sides of (5) and (6) are equal, leading to equality between
their left-hand sides: ∠(A5B5, C5B5) = ∠(A2B2, C2B2). Hence (by cyclic shift, once more) also
∠(B5C5, A5C5) = ∠(B2C2, A2C2) and ∠(C5A5, B5A5) = ∠(C2A2, B2A2). This means that the
triangles A5B5C5 and A2B2C2 have their corresponding angles equal, and consequently they
are similar.

Comment 1. This is the way in which the proof has been presented by the proposer. Trying to work
it out in the language of classical geometry, so as to avoid oriented angles, one is led to difficulties due
to the fact that the reasoning becomes heavily case-dependent. Disposition of relevant points can vary
in many respects. Angles which are equal in one case become supplementary in another. Although it
seems not hard to translate all formulas from the shapes they have in one situation to the one they
have in another, the real trouble is to identify all cases possible and rigorously verify that the key
conclusions retain validity in each case.

The use of oriented angles is a very efficient method to omit this trouble. It seems to be the most
appropriate environment in which the solution can be elaborated.

Comment 2. Actually, the fact that the circles (AB1C1), (BC1A1) and (CA1B1) have a common
point does not require a proof; it is known as Miquel’s theorem.
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G10. To each side a of a convex polygon we assign the maximum area of a triangle contained
in the polygon and having a as one of its sides. Show that the sum of the areas assigned to all
sides of the polygon is not less than twice the area of the polygon.

(Serbia)

Solution 1.

Lemma. Every convex (2n)-gon, of area S, has a side and a vertex that jointly span a triangle
of area not less than S/n.

Proof. By main diagonals of the (2n)-gon we shall mean those which partition the (2n)-gon
into two polygons with equally many sides. For any side b of the (2n)-gon denote by ∆b the
triangle ABP where A,B are the endpoints of b and P is the intersection point of the main
diagonals AA′, BB′. We claim that the union of triangles ∆b, taken over all sides, covers the
whole polygon.

To show this, choose any side AB and consider the main diagonal AA′ as a directed segment.
Let X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the
left side of the ray AA′. Consider the sequence of main diagonals AA′, BB′, CC ′, . . . , where
A,B,C, . . . are consecutive vertices, situated right to AA′.

The n-th item in this sequence is the diagonal A′A (i.e. AA′ reversed), having X on its
right side. So there are two successive vertices K,L in the sequence A,B,C, . . . before A′ such
that X still lies to the left of KK ′ but to the right of LL′. And this means that X is in the
triangle ∆`′ , `

′ = K ′L′. Analogous reasoning applies to points X on the right of AA′ (points
lying on main diagonals can be safely ignored). Thus indeed the triangles ∆b jointly cover the
whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say b = AB
and b′ = A′B′ (with AA′, BB′ main diagonals) such that [∆b] + [∆b′ ] ≥ S/n, where [· · · ] stands
for the area of a region. Let AA′, BB′ intersect at P ; assume without loss of generality that
PB ≥ PB′. Then

[ABA′] = [ABP ] + [PBA′] ≥ [ABP ] + [PA′B′] = [∆b] + [∆b′ ] ≥ S/n,

proving the lemma. �

Now, let P be any convex polygon, of area S, with m sides a1, . . . , am. Let Si be the area
of the greatest triangle in P with side ai. Suppose, contrary to the assertion, that

m∑

i=1

Si
S
< 2.

Then there exist rational numbers q1, . . . , qm such that
∑
qi = 2 and qi > Si/S for each i.

Let n be a common denominator of them fractions q1, . . . , qm. Write qi = ki/n; so
∑
ki = 2n.

Partition each side ai of P into ki equal segments, creating a convex (2n)-gon of area S (with
some angles of size 180◦), to which we apply the lemma. Accordingly, this refined polygon has
a side b and a vertex H spanning a triangle T of area [T ] ≥ S/n. If b is a piece of a side ai
of P, then the triangle W with base ai and summit H has area

[W ] = ki · [T ] ≥ ki · S/n = qi · S > Si,

in contradiction with the definition of Si. This ends the proof.
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Solution 2. As in the first solution, we allow again angles of size 180◦ at some vertices of the
convex polygons considered.

To each convex n-gon P = A1A2 . . . An we assign a centrally symmetric convex (2n)-gon Q
with side vectors ±−−−−→

AiAi+1, 1 ≤ i ≤ n. The construction is as follows. Attach the 2n vectors

±−−−−→
AiAi+1 at a common origin and label them

−→
b1,

−→
b2, . . . ,

−→
b2n in counterclockwise direction; the

choice of the first vector
−→
b1 is irrelevant. The order of labelling is well-defined if P has neither

parallel sides nor angles equal to 180◦. Otherwise several collinear vectors with the same

direction are labelled consecutively
−→
bj ,

−−→
bj+1, . . . ,

−−→
bj+r. One can assume that in such cases the

respective opposite vectors occur in the order −−→
bj ,−

−−→
bj+1, . . . ,−

−−→
bj+r, ensuring that

−−→
bj+n = −−→

bj
for j = 1, . . . , 2n. Indices are taken cyclically here and in similar situations below.

Choose points B1, B2, . . . , B2n satisfying
−−−−→
BjBj+1 =

−→
bj for j = 1, . . . , 2n. The polygonal line

Q = B1B2 . . . B2n is closed, since
∑2n

j=1

−→
bj =

−→
0 . Moreover, Q is a convex (2n)-gon due to the

arrangement of the vectors
−→
bj , possibly with 180◦-angles. The side vectors of Q are ±−−−−→

AiAi+1,

1 ≤ i ≤ n. So in particular Q is centrally symmetric, because it contains as side vectors
−−−−→
AiAi+1

and −−−−−→
AiAi+1 for each i = 1, . . . , n. Note that BjBj+1 and Bj+nBj+n+1 are opposite sides of Q,

1 ≤ j ≤ n. We call Q the associate of P.
Let Si be the maximum area of a triangle with side AiAi+1 in P, 1 ≤ i ≤ n. We prove that

[B1B2 . . . B2n] = 2
n∑

i=1

Si (1)

and

[B1B2 . . . B2n] ≥ 4 [A1A2 . . . An] . (2)

It is clear that (1) and (2) imply the conclusion of the original problem.

Lemma. For a side AiAi+1 of P, let hi be the maximum distance from a point of P to line AiAi+1,

i = 1, . . . , n. Denote by BjBj+1 the side of Q such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1. Then the distance

between BjBj+1 and its opposite side in Q is equal to 2hi.

Proof. Choose a vertex Ak of P at distance hi from line AiAi+1. Let u be the unit vector
perpendicular to AiAi+1 and pointing inside P. Denoting by x ·y the dot product of vectors x

and y, we have

h = u · −−−→AiAk = u · (−−−−→AiAi+1 + · · · + −−−−−→
Ak−1Ak) = u · (−−−−→AiAi−1 + · · ·+ −−−−−→

Ak+1Ak).

In Q, the distance Hi between the opposite sides BjBj+1 and Bj+nBj+n+1 is given by

Hi = u · (−−−−→BjBj+1 + · · ·+ −−−−−−−−→
Bj+n−1Bj+n) = u · (−→bj +

−−→
bj+1 + · · · + −−−−→

bj+n−1).

The choice of vertex Ak implies that the n consecutive vectors
−→
bj ,

−−→
bj+1, . . . ,

−−−−→
bj+n−1 are precisely−−−−→

AiAi+1, . . . ,
−−−−−→
Ak−1Ak and

−−−−→
AiAi−1, . . . ,

−−−−−→
Ak+1Ak, taken in some order. This implies Hi = 2hi. �

For a proof of (1), apply the lemma to each side of P. If O the centre of Q then, using the
notation of the lemma,

[BjBj+1O] = [Bj+nBj+n+1O] = [AiAi+1Ak] = Si .

Summation over all sides of P yields (1).
Set d(P) = [Q] − 4[P] for a convex polygon P with associate Q. Inequality (2) means that

d(P) ≥ 0 for each convex polygon P. The last inequality will be proved by induction on the
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number ` of side directions of P, i. e. the number of pairwise nonparallel lines each containing
a side of P.

We choose to start the induction with ` = 1 as a base case, meaning that certain degen-
erate polygons are allowed. More exactly, we regard as degenerate convex polygons all closed
polygonal lines of the form X1X2 . . .XkY1Y2 . . . YmX1, where X1, X2, . . . , Xk are points in this
order on a line segment X1Y1, and so are Ym, Ym−1, . . . , Y1. The initial construction applies to
degenerate polygons; their associates are also degenerate, and the value of d is zero. For the
inductive step, consider a convex polygon P which determines ` side directions, assuming that
d(P) ≥ 0 for polygons with smaller values of `.

Suppose first that P has a pair of parallel sides, i. e. sides on distinct parallel lines. Let
AiAi+1 and AjAj+1 be such a pair, and let AiAi+1 ≤ AjAj+1. Remove from P the parallelo-

gram R determined by vectors
−−−−→
AiAi+1 and

−−−−→
AiAj+1. Two polygons are obtained in this way.

Translating one of them by vector
−−−−→
AiAi+1 yields a new convex polygon P ′, of area [P] − [R]

and with value of ` not exceeding the one of P. The construction just described will be called
operation A.

R

Aj+1 Aj

Ai Ai+1

P

P ′

Q Q′

The associate of P ′ is obtained from Q upon decreasing the lengths of two opposite sides
by an amount of 2AiAi+1. By the lemma, the distance between these opposite sides is twice
the distance between AiAi+1 and AjAj+1. Thus operation A decreases [Q] by the area of a
parallelogram with base and respective altitude twice the ones of R, i. e. by 4[R]. Hence A

leaves the difference d(P) = [Q] − 4[P] unchanged.
Now, if P ′ also has a pair of parallel sides, apply operation A to it. Keep doing so with

the subsequent polygons obtained for as long as possible. Now, A decreases the number p of
pairs of parallel sides in P. Hence its repeated applications gradually reduce p to 0, and further
applications of A will be impossible after several steps. For clarity, let us denote by P again
the polygon obtained at that stage.

The inductive step is complete if P is degenerate. Otherwise ` > 1 and p = 0, i. e. there
are no parallel sides in P. Observe that then ` ≥ 3. Indeed, ` = 2 means that the vertices of P
all lie on the boundary of a parallelogram, implying p > 0.

Furthermore, since P has no parallel sides, consecutive collinear vectors in the sequence
(−→
bk

)

(if any) correspond to consecutive 180◦-angles in P. Removing the vertices of such angles, we
obtain a convex polygon with the same value of d(P).

In summary, if operation A is impossible for a nondegenerate polygon P, then ` ≥ 3. In
addition, one may assume that P has no angles of size 180◦.

The last two conditions then also hold for the associate Q of P, and we perform the fol-
lowing construction. Since ` ≥ 3, there is a side BjBj+1 of Q such that the sum of the angles
at Bj and Bj+1 is greater than 180◦. (Such a side exists in each convex k-gon for k > 4.) Natu-
rally, Bj+nBj+n+1 is a side with the same property. Extend the pairs of sides Bj−1Bj, Bj+1Bj+2
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and Bj+n−1Bj+n, Bj+n+1Bj+n+2 to meet at U and V , respectively. Let Q′ be the centrally sym-
metric convex 2(n+1)-gon obtained from Q by inserting U and V into the sequence B1, . . . , B2n

as new vertices between Bj , Bj+1 and Bj+n, Bj+n+1, respectively. Informally, we adjoin to Q
the congruent triangles BjBj+1U and Bj+nBj+n+1V . Note that Bj , Bj+1, Bj+n and Bj+n+1 are
kept as vertices of Q′, although BjBj+1 and Bj+nBj+n+1 are no longer its sides.

Let AiAi+1 be the side of P such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1 =

−→
bj . Consider the point W such

that triangle AiAi+1W is congruent to triangle BjBj+1U and exterior to P. Insert W into the
sequence A1, A2, . . . , An as a new vertex between Ai and Ai+1 to obtain an (n+1)-gon P ′. We
claim that P ′ is convex and its associate is Q′.

W

Ai+2Ai+1

Ai

Ai−1

P Q

Bj+1

Bj Bj+n+1

V

Bj+n

U

Vectors
−−→
AiW and

−−→
bj−1 are collinear and have the same direction, as well as vectors

−−−−→
WAi+1

and
−−→
bj+1. Since

−−→
bj−1,

−→
bj ,

−−→
bj+1 are consecutive terms in the sequence

(−→
bk

)

, the angle inequalities

∠(
−−→
bj−1,

−→
bj) ≤ ∠(

−−−−→
Ai−1Ai,

−→
bj) and ∠(

−→
bj ,

−−→
bj+1) ≤ ∠(

−→
bj ,

−−−−−−→
Ai+1Ai+2) hold true. They show that P ′ is

a convex polygon. To construct its associate, vectors ±−−−−→
AiAi+1 = ±−→

bj must be deleted from the

defining sequence
(−→
bk

)

of Q, and the vectors ±−−→
AiW , ±−−−−→

WAi+1 must be inserted appropriately

into it. The latter can be done as follows:

. . . ,
−−→
bj−1,

−−→
AiW,

−−−−→
WAi+1,

−−→
bj+1, . . . , −

−−→
bj−1, −

−−→
AiW, −−−−−→

WAi+1, −
−−→
bj+1, . . . .

This updated sequence produces Q′ as the associate of P ′.
It follows from the construction that [P ′] = [P] + [AiAi+1W ] and [Q′] = [Q] + 2[AiAi+1W ].

Therefore d(P ′) = d(P) − 2[AiAi+1W ] < d(P).
To finish the induction, it remains to notice that the value of ` for P ′ is less than the one

for P. This is because side AiAi+1 was removed. The newly added sides AiW and WAi+1 do
not introduce new side directions. Each one of them is either parallel to a side of P or lies on
the line determined by such a side. The proof is complete.



Number Theory

N1. Determine all pairs (x, y) of integers satisfying the equation

1 + 2x + 22x+1 = y2.

(USA)

Solution. If (x, y) is a solution then obviously x ≥ 0 and (x,−y) is a solution too. For x = 0
we get the two solutions (0, 2) and (0,−2).

Now let (x, y) be a solution with x > 0; without loss of generality confine attention to y > 0.
The equation rewritten as

2x(1 + 2x+1) = (y − 1)(y + 1)

shows that the factors y − 1 and y + 1 are even, exactly one of them divisible by 4. Hence
x ≥ 3 and one of these factors is divisible by 2x−1 but not by 2x. So

y = 2x−1m+ ε, m odd, ε = ±1. (1)

Plugging this into the original equation we obtain

2x
(
1 + 2x+1

)
=
(
2x−1m+ ε

)2 − 1 = 22x−2m2 + 2xmε,

or, equivalently
1 + 2x+1 = 2x−2m2 +mε.

Therefore
1 − εm = 2x−2(m2 − 8). (2)

For ε = 1 this yields m2 − 8 ≤ 0, i.e., m = 1, which fails to satisfy (2).
For ε = −1 equation (2) gives us

1 +m = 2x−2(m2 − 8) ≥ 2(m2 − 8),

implying 2m2 −m− 17 ≤ 0. Hence m ≤ 3; on the other hand m cannot be 1 by (2). Because
m is odd, we obtain m = 3, leading to x = 4. From (1) we get y = 23. These values indeed
satisfy the given equation. Recall that then y = −23 is also good. Thus we have the complete
list of solutions (x, y): (0, 2), (0,−2), (4, 23), (4,−23).
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N2. For x ∈ (0, 1) let y ∈ (0, 1) be the number whose nth digit after the decimal point is the
(2n)th digit after the decimal point of x. Show that if x is rational then so is y.

(Canada)

Solution. Since x is rational, its digits repeat periodically starting at some point. We wish to
show that this is also true for the digits of y, implying that y is rational.

Let d be the length of the period of x and let d = 2u · v, where v is odd. There is a positive
integer w such that

2w ≡ 1 (mod v).

(For instance, one can choose w to be ϕ(v), the value of Euler’s function at v.) Therefore

2n+w = 2n · 2w ≡ 2n (mod v)

for each n. Also, for n ≥ u we have

2n+w ≡ 2n ≡ 0 (mod 2u).

It follows that, for all n ≥ u, the relation

2n+w ≡ 2n (mod d)

holds. Thus, for n sufficiently large, the 2n+wth digit of x is in the same spot in the cycle of x
as its 2nth digit, and so these digits are equal. Hence the (n+ w)th digit of y is equal to its
nth digit. This means that the digits of y repeat periodically with period w from some point
on, as required.
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N3. The sequence f(1), f(2), f(3), . . . is defined by

f(n) =
1

n

(⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊n

n

⌋)

,

where bxc denotes the integer part of x.

(a) Prove that f(n+ 1) > f(n) infinitely often.

(b) Prove that f(n+ 1) < f(n) infinitely often.
(South Africa)

Solution. Let g(n) = nf(n) for n ≥ 1 and g(0) = 0. We note that, for k = 1, . . . , n,

⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 0

if k is not a divisor of n and
⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 1

if k divides n. It therefore follows that if d(n) is the number of positive divisors of n ≥ 1 then

g(n) =
⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊

n

n− 1

⌋

+
⌊n

n

⌋

=

⌊
n− 1

1

⌋

+

⌊
n− 1

2

⌋

+ · · · +
⌊
n− 1

n− 1

⌋

+

⌊
n− 1

n

⌋

+ d(n)

= g(n− 1) + d(n).

Hence

g(n) = g(n−1) + d(n) = g(n−2) + d(n−1) + d(n) = · · · = d(1) + d(2) + · · ·+ d(n),

meaning that

f(n) =
d(1) + d(2) + · · · + d(n)

n
.

In other words, f(n) is equal to the arithmetic mean of d(1), d(2), . . . , d(n). In order to prove
the claims, it is therefore sufficient to show that d(n + 1) > f(n) and d(n + 1) < f(n) both
hold infinitely often.

We note that d(1) = 1. For n > 1, d(n) ≥ 2 holds, with equality if and only if n is prime.
Since f(6) = 7/3 > 2, it follows that f(n) > 2 holds for all n ≥ 6.

Since there are infinitely many primes, d(n + 1) = 2 holds for infinitely many values of n,
and for each such n ≥ 6 we have d(n+ 1) = 2 < f(n). This proves claim (b).

To prove (a), notice that the sequence d(1), d(2), d(3), . . . is unbounded (e. g. d(2k) = k+ 1
for all k). Hence d(n+ 1) > max{d(1), d(2), . . . , d(n)} for infinitely many n. For all such n, we
have d(n+ 1) > f(n). This completes the solution.
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N4. Let P be a polynomial of degree n > 1 with integer coefficients and let k be any positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), with k pairs of parentheses.
Prove that Q has no more than n integer fixed points, i.e. integers satisfying the equation
Q(x) = x.

(Romania)

Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself.
For the sequel assume that this is not the case. Take any integer x0 such that Q(x0) = x0,
P (x0) 6= x0 and define inductively xi+1 = P (xi) for i = 0, 1, 2, . . . ; then xk = x0.

It is evident that

P (u) − P (v) is divisible by u− v for distinct integers u, v. (1)

(Indeed, if P (x) =
∑
aix

i then each ai(u
i − vi) is divisible by u− v.) Therefore each term in

the chain of (nonzero) differences

x0 − x1, x1 − x2, . . . , xk−1 − xk, xk − xk+1 (2)

is a divisor of the next one; and since xk − xk+1 = x0 − x1, all these differences have equal
absolute values. For xm = min(x1, . . . , xk) this means that xm−1 − xm = −(xm − xm+1). Thus
xm−1 = xm+1( 6= xm). It follows that consecutive differences in the sequence (2) have opposite
signs. Consequently, x0, x1, x2, . . . is an alternating sequence of two distinct values. In other
words, every integer fixed point of Q is a fixed point of the polynomial P (P (x)). Our task is
to prove that there are at most n such points.

Let a be one of them so that b = P (a) 6= a (we have assumed that such an a exists); then
a = P (b). Take any other integer fixed point α of P (P (x)) and let P (α) = β, so that P (β) = α;
the numbers α and β need not be distinct (α can be a fixed point of P ), but each of α, β is
different from each of a, b. Applying property (1) to the four pairs of integers (α, a), (β, b),
(α, b), (β, a) we get that the numbers α− a and β − b divide each other, and also α− b and
β − a divide each other. Consequently

α− b = ±(β − a), α− a = ±(β − b). (3)

Suppose we have a plus in both instances: α− b = β − a and α− a = β − b. Subtraction yields
a− b = b− a, a contradiction, as a 6= b. Therefore at least one equality in (3) holds with a minus
sign. For each of them this means that α + β = a + b; equivalently a+ b− α− P (α) = 0.

Denote a + b by C. We have shown that every integer fixed point of Q other that a and b is
a root of the polynomial F (x) = C − x− P (x). This is of course true for a and b as well. And
since P has degree n > 1, the polynomial F has the same degree, so it cannot have more than
n roots. Hence the result.

Comment. The first part of the solution, showing that integer fixed points of any iterate of P are
in fact fixed points of the second iterate P◦P is standard; moreover, this fact has already appeared
in contests. We however do not consider this as a major drawback to the problem because the only
tricky moment comes up only at the next stage of the reasoning—to apply the divisibility property (1)
to points from distinct 2-orbits of P . Yet maybe it would be more appropriate to state the problem
in a version involving k = 2 only.
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N5. Find all integer solutions of the equation

x7 − 1

x− 1
= y5 − 1.

(Russia)

Solution. The equation has no integer solutions. To show this, we first prove a lemma.

Lemma. If x is an integer and p is a prime divisor of
x7 − 1

x− 1
then either p ≡ 1 (mod 7) or p = 7.

Proof. Both x7−1 and xp−1−1 are divisible by p, by hypothesis and by Fermat’s little theorem,
respectively. Suppose that 7 does not divide p− 1. Then gcd(p−1, 7) = 1, so there exist integers
k and m such that 7k + (p− 1)m = 1. We therefore have

x ≡ x7k+(p−1)m ≡ (x7)k · (xp−1)m ≡ 1 (mod p),

and so
x7 − 1

x− 1
= 1 + x+ · · ·+ x6 ≡ 7 (mod p).

It follows that p divides 7, hence p = 7 must hold if p ≡ 1 (mod 7) does not, as stated. �

The lemma shows that each positive divisor d of
x7 − 1

x− 1
satisfies either d ≡ 0 (mod 7) or

d ≡ 1 (mod 7).
Now assume that (x, y) is an integer solution of the original equation. Notice that y − 1 > 0,

because
x7 − 1

x− 1
> 0 for all x 6= 1. Since y − 1 divides

x7 − 1

x− 1
= y5 − 1, we have y ≡ 1 (mod 7)

or y ≡ 2 (mod 7) by the previous paragraph. In the first case, 1+ y+ y2 + y3 + y4 ≡ 5 (mod 7),
and in the second 1 + y + y2 + y3 + y4 ≡ 3 (mod 7). Both possibilities contradict the fact that

the positive divisor 1+ y+ y2 + y3 + y4 of
x7 − 1

x− 1
is congruent to 0 or 1 modulo 7. So the given

equation has no integer solutions.
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N6. Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c,
denoted by w(c), to be the minimal possible value of |x|+ |y| taken over all pairs of integers x
and y such that

ax+ by = c.

An integer c is called a local champion if w(c) ≥ w(c± a) and w(c) ≥ w(c± b).
Find all local champions and determine their number.

(USA)

Solution. Call the pair of integers (x, y) a representation of c if ax+ by = c and |x| + |y| has
the smallest possible value, i.e. |x| + |y| = w(c).

We characterise the local champions by the following three observations.

Lemma 1. If (x, y) a representation of a local champion c then xy < 0.

Proof. Suppose indirectly that x ≥ 0 and y ≥ 0 and consider the values w(c) and w(c+ a). All
representations of the numbers c and c + a in the form au+ bv can be written as

c = a(x− kb) + b(y + ka), c+ a = a(x+ 1 − kb) + b(y + ka)

where k is an arbitrary integer.
Since |x| + |y| is minimal, we have

x+ y = |x| + |y| ≤ |x− kb| + |y + ka|

for all k. On the other hand, w(c+ a) ≤ w(c), so there exists a k for which

|x+ 1 − kb| + |y + ka| ≤ |x| + |y| = x+ y.

Then

(x+ 1 − kb) + (y + ka) ≤ |x+ 1 − kb| + |y + ka| ≤ x+ y ≤ |x− kb| + |y + ka|.

Comparing the first and the third expressions, we find k(a − b) + 1 ≤ 0 implying k < 0.
Comparing the second and fourth expressions, we get |x+ 1− kb| ≤ |x− kb|, therefore kb > x;
this is a contradiction.

If x, y ≤ 0 then we can switch to −c, −x and −y. �

From this point, write c = ax − by instead of c = ax + by and consider only those cases
where x and y are nonzero and have the same sign. By Lemma 1, there is no loss of generality
in doing so.

Lemma 2. Let c = ax− by where |x|+ |y| is minimal and x, y have the same sign. The number
c is a local champion if and only if |x| < b and |x| + |y| =

⌊
a+b
2

⌋
.

Proof. Without loss of generality we may assume x, y > 0.
The numbers c− a and c+ b can be written as

c− a = a(x− 1) − by and c+ b = ax− b(y − 1)

and trivially w(c− a) ≤ (x− 1) + y < w(c) and w(c+ b) ≤ x+ (y − 1) < w(c) in all cases.
Now assume that c is a local champion and consider w(c+ a). Since w(c+ a) ≤ w(c), there

exists an integer k such that

c+ a = a(x+ 1 − kb) − b(y − ka) and |x+ 1 − kb| + |y − ka| ≤ x+ y.
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This inequality cannot hold if k ≤ 0, therefore k > 0. We prove that we can choose k = 1.
Consider the function f(t) = |x+ 1− bt|+ |y− at| − (x+ y). This is a convex function and

we have f(0) = 1 and f(k) ≤ 0. By Jensen’s inequality, f(1) ≤
(
1 − 1

k

)
f(0) + 1

k
f(k) < 1. But

f(1) is an integer. Therefore f(1) ≤ 0 and

|x+ 1 − b| + |y − a| ≤ x+ y.

Knowing c = a(x− b) − b(y − a), we also have

x+ y ≤ |x− b| + |y − a|.

Combining the two inequalities yields |x+ 1 − b| ≤ |x− b| which is equivalent to x < b.
Considering w(c− b), we obtain similarly that y < a.
Now |x− b| = b− x, |x+ 1 − b| = b− x− 1 and |y − a| = a− y, therefore we have

(b− x− 1) + (a− y) ≤ x+ y ≤ (b− x) + (a− y),

a+ b− 1

2
≤ x+ y ≤ a+ b

2
.

Hence x+ y =
⌊
a+b
2

⌋
.

To prove the opposite direction, assume 0 < x < b and x+ y =
⌊
a+b
2

⌋
. Since a > b, we also

have 0 < y < a. Then

w(c+ a) ≤ |x+ 1 − b| + |y − a| = a + b− 1 − (x+ y) ≤ x+ y = w(c)

and
w(c− b) ≤ |x− b| + |y + 1 − a| = a + b− 1 − (x+ y) ≤ x+ y = w(c)

therefore c is a local champion indeed. �

Lemma 3. Let c = ax− by and assume that x and y have the same sign, |x| < b, |y| < a and
|x| + |y| =

⌊
a+b
2

⌋
. Then w(c) = x+ y.

Proof. By definition w(c) = min{|x − kb| + |y − ka| : k ∈ Z}. If k ≤ 0 then obviously
|x− kb| + |y − ka| ≥ x+ y. If k ≥ 1 then

|x− kb| + |y − ka| = (kb− x) + (ka− y) = k(a+ b) − (x+ y) ≥ (2k − 1)(x+ y) ≥ x+ y.

Therefore w(c) = x+ y indeed. �

Lemmas 1, 2 and 3 together yield that the set of local champions is

C =

{

± (ax− by) : 0 < x < b, x+ y =

⌊
a+ b

2

⌋}

.

Denote by C+ and C− the two sets generated by the expressions +(ax− by) and −(ax − by),
respectively. It is easy to see that both sets are arithmetic progressions of length b − 1, with
difference a + b.

If a and b are odd, then C+ = C−, because a(−x) − b(−y) = a(b − x) − b(a − y) and
x + y = a+b

2
is equivalent to (b − x) + (a − y) = a+b

2
. In this case there exist b − 1 local

champions.
If a and b have opposite parities then the answer is different. For any c1 ∈ C+ and c2 ∈ C−,

2c1 ≡ −2c2 ≡ 2

(

a
a+ b− 1

2
− b · 0

)

≡ −a (mod a+ b)
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and
2c1 − 2c2 ≡ −2a (mod a+ b).

The number a+ b is odd and relatively prime to a, therefore the elements of C+ and C− belong
to two different residue classes modulo a + b. Hence, the set C is the union of two disjoint
arithmetic progressions and the number of all local champions is 2(b− 1).

So the number of local champions is b− 1 if both a and b are odd and 2(b− 1) otherwise.

Comment. The original question, as stated by the proposer, was:
(a) Show that there exists only finitely many local champions;
(b) Show that there exists at least one local champion.
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N7. Prove that, for every positive integer n, there exists an integer m such that 2m + m is
divisible by n.

(Estonia)

Solution. We will prove by induction on d that, for every positive integer N , there exist positive
integers b0, b1, . . . , bd−1 such that, for each i = 0, 1, 2, . . . , d− 1, we have bi > N and

2bi + bi ≡ i (mod d).

This yields the claim for m = b0.
The base case d = 1 is trivial. Take an a > 1 and assume that the statement holds for

all d < a. Note that the remainders of 2i modulo a repeat periodically starting with some
exponent M . Let k be the length of the period; this means that 2M+k′ ≡ 2M (mod a) holds
only for those k′ which are multiples of k. Note further that the period cannot contain all the
a remainders, since 0 either is missing or is the only number in the period. Thus k < a.

Let d = gcd(a, k) and let a′ = a/d, k′ = k/d. Since 0 < k < a, we also have 0 < d < a. By
the induction hypothesis, there exist positive integers b0, b1, . . . , bd−1 such that bi > max(2M , N)
and

2bi + bi ≡ i (mod d) for i = 0, 1, 2, . . . , d− 1. (1)

For each i = 0, 1, . . . , d− 1 consider the sequence

2bi + bi, 2bi+k + (bi + k), . . . , 2bi+(a′−1)k + (bi + (a′ − 1)k). (2)

Modulo a, these numbers are congruent to

2bi + bi, 2bi + (bi + k), . . . , 2bi + (bi + (a′ − 1)k),

respectively. The d sequences contain a′d = a numbers altogether. We shall now prove that no
two of these numbers are congruent modulo a.

Suppose that
2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod a) (3)

for some values of i, j ∈ {0, 1, . . . , d− 1} and m,n ∈ {0, 1, . . . , a′ − 1}. Since d is a divisor of a,
we also have

2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod d).

Because d is a divisor of k and in view of (1), we obtain i ≡ j (mod d). As i, j ∈ {0, 1, . . . , d−1},
this just means that i = j. Substituting this into (3) yields mk ≡ nk (mod a). Therefore
mk′ ≡ nk′ (mod a′); and since a′ and k′ are coprime, we get m ≡ n (mod a′). Hence also
m = n.

It follows that the a numbers that make up the d sequences (2) satisfy all the requirements;
they are certainly all greater than N because we chose each bi > max(2M , N). So the statement
holds for a, completing the induction.
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