44th IMO 2003

Problem 1. S is the set $\{1,2,3, \ldots, 1000000\}$. Show that for any subset A of S with 101 elements we can find 100 distinct elements x_{i} of S, such that the sets $\left\{a+x_{i} \mid a \in A\right\}$ are all pairwise disjoint.

Problem 2. Find all pairs (m, n) of positive integers such that $\frac{m^{2}}{2 m n^{2}-n^{3}+1}$ is a positive integer.

Problem 3. A convex hexagon has the property that for any pair of opposite sides the distance between their midpoints is $\sqrt{3} / 2$ times the sum of their lengths Show that all the hexagon's angles are equal.

Problem 4. $A B C D$ is cyclic. The feet of the perpendicular from D to the lines $A B, B C, C A$ are P, Q, R respectively. Show that the angle bisectors of $A B C$ and $C D A$ meet on the line $A C$ iff $R P=R Q$.

Problem 5. Given $n>2$ and reals $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, show that $\left(\sum_{i, j}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2}{3}\left(n^{2}-1\right) \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}$. Show that we have equality iff the sequence is an arithmetic progression.

Problem 6. Show that for each prime p, there exists a prime q such that $n^{p}-p$ is not divisible by q for any positive integer n.

