44th IMO 2003

Problem 1. S is the set $\{1, 2, 3, ..., 1000000\}$. Show that for any subset A of S with 101 elements we can find 100 distinct elements x_i of S, such that the sets $\{a + x_i | a \in A\}$ are all pairwise disjoint.

Problem 2. Find all pairs (m, n) of positive integers such that $\frac{m^2}{2mn^2 - n^3 + 1}$ is a positive integer.

Problem 3. A convex hexagon has the property that for any pair of opposite sides the distance between their midpoints is $\sqrt{3}/2$ times the sum of their lengths Show that all the hexagon's angles are equal.

Problem 4. *ABCD* is cyclic. The feet of the perpendicular from *D* to the lines *AB*, *BC*, *CA* are *P*, *Q*, *R* respectively. Show that the angle bisectors of *ABC* and *CDA* meet on the line *AC* iff RP = RQ.

Problem 5. Given n > 2 and reals $x_1 \le x_2 \le \cdots \le x_n$, show that $(\sum_{i,j} |x_i - x_j|)^2 \le \frac{2}{3}(n^2 - 1) \sum_{i,j} (x_i - x_j)^2$. Show that we have equality iff the sequence is an arithmetic progression.

Problem 6. Show that for each prime p, there exists a prime q such that $n^p - p$ is not divisible by q for any positive integer n.