43rd IMO 2002

Problem 1. S is the set of all (h, k) with h, k non-negative integers such that $h+k<n$. Each element of S is colored red or blue, so that if (h, k) is red and $h^{\prime} \leq h, k^{\prime} \leq k$, then $\left(h^{\prime}, k^{\prime}\right)$ is also red. A type 1 subset of S has n blue elements with different first member and a type 2 subset of S has n blue elements with different second member. Show that there are the same number of type 1 and type 2 subsets.

Problem 2. $B C$ is a diameter of a circle center $O . A$ is any point on the circle with $\angle A O C>60^{\circ}$. $E F$ is the chord which is the perpendicular bisector of $A O . D$ is the midpoint of the minor arc $A B$. The line through O parallel to $A D$ meets $A C$ at J. Show that J is the incenter of triangle $C E F$.

Problem 3. Find all pairs of integers $m>2, n>2$ such that there are infinitely many positive integers k for which $k^{n}+k^{2}-1$ divides $k^{m}+k-1$.

Problem 4. The positive divisors of the integer $n>1$ are $d_{1}<d_{2}<\ldots<$ d_{k}, so that $d_{1}=1, d_{k}=n$. Let $d=d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$. Show that $d<n^{2}$ and find all n for which d divides n^{2}.

Problem 5. Find all real-valued functions on the reals such that $(f(x)+$ $f(y))((f(u)+f(v))=f(x u-y v)+f(x v+y u)$ for all x, y, u, v.

Problem 6. $n>2$ circles of radius 1 are drawn in the plane so that no line meets more than two of the circles. Their centers are $O_{1}, O_{2}, \cdots, O_{n}$. Show that $\sum_{i<j} 1 / O_{i} O_{j} \leq(n-1) \pi / 4$.

