42nd International Mathematical Olympiad

Washington, DC, United States of America

July 8-9, 2001

Problems

Each problem is worth seven points.

Problem 1

Let $A B C$ be an acute-angled triangle with circumcentre O. Let P on $B C$ be the foot of the altitude from A.
Suppose that $\angle B C A \geq \angle A B C+30^{\circ}$.
Prove that $\angle C A B+\angle C O P<90^{\circ}$.

Problem 2

Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4

Let n be an odd integer greater than 1 , and let $k_{1}, k_{2}, \ldots, k_{n}$ be given integers. For each of the n ! permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $1,2, \ldots, n$, let

$$
S(a)=\sum_{i=1}^{n} k_{i} a_{i}
$$

Prove that there are two permutations b and $c, b \neq c$, such that $n!$ is a divisor of $S(b)-S(c)$.

Problem 5

In a triangle $A B C$, let $A P$ bisect $\angle B A C$, with P on $B C$, and let $B Q$ bisect $\angle A B C$, with Q on $C A$.
It is known that $\angle B A C=60^{\circ}$ and that $A B+B P=A Q+Q B$.
What are the possible angles of triangle $A B C$?

Problem 6

Let a, b, c, d be integers with $a>b>c>d>0$. Suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c)
$$

Prove that $a b+c d$ is not prime.

