$36^{\text {th }}$ International Mathematical Olympiad
 First Day - Toronto - July 19, 1995
 Time Limit: $4 \frac{1}{2}$ hours

1. Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N, X Y$ are concurrent.
2. Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

3. Determine all integers $n>3$ for which there exist n points A_{1}, \ldots, A_{n} in the plane, no three collinear, and real numbers r_{1}, \ldots, r_{n} such that for $1 \leq i<j<k \leq n$, the area of $\triangle A_{i} A_{j} A_{k}$ is $r_{i}+r_{j}+r_{k}$.

$36^{\text {th }}$ International Mathematical Olympiad
 Second Day - Toronto - July 20, 1995
 Time Limit: $4 \frac{1}{2}$ hours

1. Find the maximum value of x_{0} for which there exists a sequence $x_{0}, x_{1} \ldots, x_{1995}$ of positive reals with $x_{0}=x_{1995}$, such that for $i=1, \ldots, 1995$,

$$
x_{i-1}+\frac{2}{x_{i-1}}=2 x_{i}+\frac{1}{x_{i}} .
$$

2. Let $A B C D E F$ be a convex hexagon with $A B=B C=C D$ and $D E=$ $E F=F A$, such that $\angle B C D=\angle E F A=\pi / 3$. Suppose G and H are points in the interior of the hexagon such that $\angle A G B=\angle D H E=$ $2 \pi / 3$. Prove that $A G+G B+G H+D H+H E \geq C F$.
3. Let p be an odd prime number. How many p-element subsets A of $\{1,2, \ldots 2 p\}$ are there, the sum of whose elements is divisible by p ?
